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Abstract
We describe in this manuscript Freetwm, a free software designed for the study of the dynamics of multi-

section semiconductor lasers based on the Traveling Wave approach of Maxwell Bloch equations. Spatially

distributed Bragg gratings sections, with or without chirp, can be included as well as saturable absorbers

and external optical injection. Active - passive coupled sections can also be modeled. It is also possible

to recast the traveling wave equations into an ensemble of delayed algebraic equations via the technique of

mesh decimation. This typically allows for speedups of an order of magnitude as time integration within

the sparse mesh is much less time consuming. The physical model for the semiconductor response and the

numerical algorithm are detailed. This first version applies to semiconductor quantum well active medium

and will be further extended to other material. The program is implemented as an ensemble of functions to

be used from within Octave and Matlab. We discuss several examples.
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I INTRODUCTION

I. INTRODUCTION

A. Foreword

This software was initially elaborated during a postdoctoral stage funded by the Juan de la

Cierva program from the Spanish Ministry of Science as a tool for the simulation of multisection

devices. It was further developed within the project IOLOS-FP6-2005-IST-5 funded by the FP6

European program to allow for the simulation of the optical response of coupled micro-ring resonators

under optical injection. Latter on, it was extended within the framework of the EPSRC project

EP/E065112/1, High Power, High Frequency Mode-locked Semiconductor Lasers, to allow for the

simulation of semiconductor saturable absorbers in order to model the dynamics of passively mode-

locked lasers. It is now supported by the Ramon y Cajal program of the Spanish ministry of science

and has been further improved to allow for the simulation of distributed Bragg reflectors, distributed

feedback lasers and chirped gratings. The last addition is the recently developed technique of mesh

decimation that permit a recasting of the traveling wave equations into an ensemble of delayed

algebraic equations (DAE). This typically allows for speedups of one or two orders of magnitude.

B. Learning curve

The software is composed of seven functions, as detailed in Sec. IVA: three of them are trivial.

One plots the gain/index of the active medium while another one visually represents the optical field

and the carrier density profiles within the cavity. The sixth one saves the user the hassle to scale and

unwrap the results of a Fast Fourier Transform which leaves us with only one meaningful function

to learn called, quite appropriately, freetwm, that controls the details of the time integration. Still,

one can model a complex photonic structure composed of several coupled waveguides, gratings and

saturable absorbers, by using only this function, confirming that

“Simplicity is the ultimate sophistication.” (Leonardo da Vinci)

C. Scope

The Traveling Wave Model (TWM) is designed for the study of the dynamics of multisection

semiconductor lasers within the approach of the slowly varying approximation (SVA), i.e. with a

spatial resolution above the optical wavelength. Still, the resulting partial differential equations

(PDE)s model for the coarse-grained slowly evolving optical waves includes sub-wavelength effects

as for instance spatial-hole-burning, distributed Bragg reflectors (DBR) as well as chirped gratings.
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D Features I INTRODUCTION

The possible spatial variations of the material parameters allows for a seamless inclusion of saturable

absorbers and of passive sections.

The physical model for the semiconductor response is based on the rotating wave approximation

(RWA) and the quasi-equilibrium approximation (QEA) for the carriers densty within the Quantum

Well. One also assumes a two-band carrier model in the single relaxation rate approximation as well

as a marginal influence of the spectral hole burning, i.e. one is assuming optical powers densities

of the order of the pJ or below. The numerical algorithm is based on a semi-implicit second order

method appropriate for stiff problems where the integration is performed along the characteristics,

a method also appropriate for hyperbolic PDEs.

We detail the program interface of the time integratorm as a mex function for use with Oc-

tave and Matlab. Several typical examples are given. The appendices contain the derivation of

the wave equation model, the semiconductor response model as well as their respective numerical

implementations.

D. Features

The program possesses the following features;

• It is fast considering the relatively high complexity of the physical model. For a one millimeter

long device, a simulation of half a microsecond (2×104 mode-locked pulses at a 40 GHz repeti-

tion rate) is done in 10 min on a standard PC with parameters typical of III-V semiconductor

quantum well lasers.

• It possesses an interface to Octave and Matlab. It is actually a mex library callable from the

Matlab command line. This allows for instance to conveniently save data in binary .mat files,

perform data processing or generate illustrations in an unified framework. It is compatible with

the Matlab free open source clone Octave for easy cluster deployment and easy scripting

without any multiple license problems.

• It is multi-platform and works under Linux, Mac OSX and on Windows. It can run in

single or double precision, sequential or parallel (Openmp), and can use or not the Intel

Math Kernel Library for performance enhancements.

• The new (optional) mesh decimation method that consists in recasting the traveling wave

equations into an ensemble of delayed algebraic equations [1] allows for speedups of several

orders of magnitude.
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• It uses the recently developed fast convolution kernel active medium description [2] that allows

to model either spectrally broad gain sections or sharp, step-like saturable absorber sections

around their band-edge frequencies.

• It has been extensively tested during years and confronted successfully to several experiments.

The whole source code as well as all the details of the implementation and of all the approxi-

mations performed are explained and detailed, a must for anybody planning to base any work

on it.

• At last, it is extremely simple to use: a complex photonic structure can be described and

simulated by a straightforward script of 20 lines.

E. Intended use

We have been led to believe from our experience that a large number of experimental results

regarding the multimode dynamics of semiconductor lasers can be reproduced within the model

presented, at least qualitatively. We also believe that it can help to build some intuition of the

underlying dynamics which, in turn, may give some useful qualitative guidelines for device design

and optimization.

It is important to define for which use this program and the associated model is intended. As

the title mention, it is intended for multisection semiconductor lasers devices. Semiconductor lasers

are by essence devices, in which one has a high gain, high losses and also high cavity losses. In this

case, one of the most useful approximation of laser physics, the so-called Uniform Field Limit (UFL)

approximation [3], does not hold. It is why one has to rely on spatially distributed models as the

complete orthogonal basis of cold cavity modes upon which one can project the dynamics does not

exist [3].

Otherwise, a modal decomposition would result in a model based on a low number of ordinary

differential equations, the so-called coupled rate equations models (REMs). Even if it is impossible

to derive them rigorously out of the UFL, as the spatial dependence of the gain cannot be removed,

nice results can be obtained as exemplified by the huge literature on REMs. Indeed, the conceptual

simplicity of the REMs allows both for analytical and numerical bifurcation studies. However, RE

approaches do not accommodate very well with multiple section devices and spatial composition vari-

ations. This stems from the fact that the spatial variation of some parameters has to be decomposed

on a basis similar to the one used for the field in the cavity, thereby inducing an extremely complex

hierarchy of coupled REMs, specially if a strongly multimode regime is sought.

One has also to mention a recent alternative to REMs approach based on Delay differential
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E Intended use I INTRODUCTION

equations (DDE) modeling [4] that allows for an elegant treatment of the case of an unidirectional

ring lasers, with a gain and a saturable absorber section, possibly out of the UFL limit. However, to

be tractable the model presented in [4] relies on neglecting the internal losses, assumes linear gain

and absorption and the presence of a bandwidth limiting filter as well as unidirectional operation.

This approach has been recently improved in [5] and remove some of the limitations, although the

dynamics is still assumed to be unidirectional and one still needs to assume the presence of an

external filter.

On the other hand, the model described in this manuscript presents, at least in our opinion, a

good compromise between the physically important effects at play within a laser and the induced

computational cost of their implementation, which is a very important trade-off to consider. One

may find in the literature excellent descriptions of the semiconductor materials based on elaborate

microscopic k · p theories [6] coupled to FDTD models [7] solving the Maxwell equations in three

dimensions. Although much more precise, these models are difficult to use since they resolve the fast

intraband relaxation of the individual transitions – on the time scale of 100 fs – as well as they resolve

the electromagnetic fields bellow the wavelength. Since the asymptotic dynamics of a laser usually

settles on several hundreds of nanoseconds, these model requires to span seven orders of magnitudes

which, in turn, impedes parametric studies thereby hindering a comprehensive understanding of the

dynamical scenarii.

One shall also mention the existence of commercial software like for instance LASTIP and PICS3D

from CrossLight or PICWAVE from Photon Design, that do allow for time evolution. For

LASTIP, it is possible to do large-signal and also small-signal AC analysis of DC results. The main

equations solved by these software are the Poisson equation and current continuity for electrons and

holes; this includes many effects including various recombination terms and trap dynamics as well as

an optional time dependent hydrodynamic model for hot carriers, as well as the heat flow equation

with various source terms including recombination heat, Peltier heat, etc. Notice however that lasers

equations are still based on a photon rate equation.

Hence, one can justify the use of a TWM in the cases where one seek long term asymptotic

results for devices in which the UFL does not apply, for the non unidirectional regimes of ring

lasers, for geometries that consist in compounds structures and for broadband, strongly multimode

dynamics. In all these cases, a modal decomposition is difficult to obtain and/or the REMs becomes

cumbersome. The recently developed, and yet to be published, technique of mesh decimation [1]

allows for a recasting of the TWM into an ensemble of Delay Algebraic Equations (DAE) allows

filling the gap between the DDE approaches of [4, 5] and the TWM approaches.
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F. Bifurcation diagrams

Parameters sweeps can be achieved in a reasonable time in order to provides some trends and to

try and reproduce some global dynamical scenarii. However, a parameter sweep is not a bifurcation

diagram and such a diagram may not be achieved with such a traveling wave model, although some

very encouraging preliminary studies in this direction exist, e.g. see [8] for a direct bifurcation study of

a the more tractable case of a two level atom TWM. On the other hand, a direct bifurcation diagram

of RE or DDE models are possible with the software AUTO [9] and DDEbiftool [10], respectively.

Notice also the existence of the project LDSL-tool [11] that besides integrating the PDEs, should

allow to rebuild reduced ODE models based on finite number of modes which can be analyzed a

posteriori with well known tools for bifurcation analysis such as AUTO [9].

G. License agreement

The code is free for non-commercial use and released on GPL v3 license. If you obtain good

results, we would be glad to hear about it and to receive a copy of the paper(s) in which the results

are reported. If you experience problems, we would also be interested in knowing so and sending us

a minimal example script allowing to reproduce the problem would be useful. You shall refer the use

of Freetwm to the following publication [12].
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II. THE MODEL

This section gives an overview of the model and of the meaning of its parameters. We refer the

reader to Chapter VI for a detailed derivation of the slowly evolving traveling wave equations. A

short derivation of the optical kernel response for the case of a quantum well material is given in

Chapter VII. At last, the numerical algorithm for the time integration of Eqs. (II.2-II.9) is detailed

in Chapter VIII.

A. Wave and carrier model

The total linearly polarized field is decomposed as

E (~r, t) = Φ (~r⊥)
{
E+ (z, t) ei(q0z−ω0t) + E− (z, t) e−i(q0z+ω0t)

}
+ c.c. . (II.1)

By performing the slowly varying approximation around the optical carrier (ω0, q0) one obtain the

following model equation

(∂t ± ∂z)E± (z, t) = iP± (z, t)− λ (z)E± (z, t)− iκ± (z)E∓ (z, t) , (II.2)

∂tD0 (z, t) = J (z)−R (D0)− is
(
P+E

?
+ + P−E

?
− − c.c.

)
, (II.3)

∂tD±2 (z, t) = −
(
R′ (D0) + 4Dq2

0

)
D±2 − is

(
P±E

?
∓ − E±P ?

∓
)
, (II.4)

R (D) = A (z)D +B (z)D2 + C (z)D3. (II.5)

For convenience purposes we have scaled space and time to the cavity length L and to the photon

transit time τc = L/υg, respectively. P± are the projections of the total polarization at (z, t) onto

the forward and backward propagation directions. They are obtained by a coarse graining procedure

that consist in averaging the polarization over a few wavelength [3]. We use the natural convention

in which the gain is given by −= (P±/E±) and the index of refraction by < (P±/E±). The scaled

internal losses for the field amplitudes are λ.

The scaled resonant component of the distributed feedback coupling is denoted κ±(z). We assume

that the index modulation is real, therefore that κ− = κ?+. The slowly evolving spatial evolution of

κ± relates either to the chirp rate of the grating or to the detuning between the Bragg wavelength

and the reference spatial frequency q0 = (2πng)/λ0 around which we performed the Slowly Varying

Approximation.

The total carrier density is normalized to the transparency Nt and decomposed as

D(z, t) = D0(z, t) +
[
D+2(z, t)e2iq0z +D−2(z, t)e−2iq0z

]
+ h.o.t, (II.6)

where D0(z, t) is the quasi-homogeneous component and D+2(z, t) = D?
−2(z, t) is the weak grating

component arising from the standing wave effects in the system, the so-called spatial hole burning. J
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B Material gain model II THE MODEL

is the current density injected per unit time normalized toNt and the recombination term includes the

usual non radiative (A), bi-molecular (B) and Auger (C) recombination terms. The coefficient B and

C are normalized toNt andN2
t , respectively. The differential carrier recovery rate is R′(D) = dR/dD.

The ambipolar diffusion coefficient is D and it is assumed sufficiently large to ensure that |D2| � D0

to justify the perturbative treatment of the standing wave population grating, i.e. the neglect of the

higher order harmonics in Eq. (II.6).

At last, we introduced a scaling factor s whose only purpose is to get order one quantities. Indeed,

s is immaterial to the problem and can be absorbed into a rescaling Ẽ± =
√
sE± and P̃± =

√
sP±.

It is however useful a parameter if one wants to work in single precision.

B. Material gain model

The closure relation linking the field, the carriers and the polarization is given by

P± (z, t) = χ0 (z)

{ˆ +∞

0

dsχ [s,D0 (z, t− s)]E± (z, t− s)

+ D±2 (z, t− s) ∂χ
∂D

[s,D0 (z, t− s)]E∓ (z, t− s) ds
}

+ β (z) ξ± (t) . (II.7)

ξ± (t) is a Gaussian delta correlated random process of variance unity which, for the sake of

simplicity, we consider to be independent of the population inversion D0. The kernel of integration

represents the result of the summation over the energy band assuming a Fermi function for the

electron and hole distributions. In the general case that we implemented this function does not have

a simple analytical form. However, two asymptotic cases can be readily expressed which allows us

to discuss the six parameters governing the material response. Firstly, in the degenerate limit of a

quantum well at zero temperature, see [13] for details, one has

χ (s,D) = exp {− [γ (z) + iΩG (z)] s} 2 exp [−iγ (z)Ds]− exp [−iΩT (z) s]− 1

πs
. (II.8)

Secondly, in the low density limit and possibly at high temperature, see [14] for details, ones has

χ (s,D) = exp {− [γ (z) + iΩG (z)] s}
{
γD

π

(
1

i− γcs
+

1

i− γvs

)
+

1− exp [−iΩT s]

πs

}
. (II.9)

1. In the above formula, the modal maximal gain (resp. absorption) for the field amplitude at the

location z in space is given by χ0 (z) (resp −χ0 (z)). Notice that the field confinement factor Γ

do not appears in the model since we are considering the modal gain, i.e. it is contained in χ0.

2. The breadth of the gain curve is partly proportional to the inverse of the intraband relaxation

rate γ (z) that governs the homogeneous width of each transition.
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3. The breadth of the gain curve is also related to the conduction and valence electron thermal

width distribution defined as ~γc,v = kbT ×mc,v/(mc +mv), with mc,v the effective masses and

kB and T the Boltzmann constant and the temperature, respectively.

4. The the band-gap frequency is denoted Ωg (z) and represents the frequency at which, in the

absence of population inversion the transition from transparent to absorptive behavior occurs.

5. Similarly, the maximal frequency above which the active medium becomes again transparent

is denoted by the top band frequency ΩT (z).

6. Notice that both the asymptotic expressions above are (and must be) identical for short time

argument s� 1.

All parameters can be in principle spatially dependent to reflect composition variations o the active

material, like e.g. due to regrowth techniques, proton bombardment or to the presence of a reverse

voltage bias on some section of the laser diode. It can also model section passivated via intermixing,

although if such a section is relatively long, one should not try to solve such an easy linear propagation

problem with such a complicated non linear model. Some better methods are discussed in the example

section VF.

Since the convolution kernel is non vanishing over a few hundred femtoseconds, a time span over

which the carrier density is almost a constant, one can perform an useful approximation by performing

the following substitution in Eq. (II.7)

D0 (t− s) = D0 (t) , D2 (t− s) = D2 (t) . (II.10)

This approximation is most of the time safe. Therefore, it is made by default although it can be

undone by providing for the appropriate compilation flag, see section IV J 1.

C. Boundary conditions

The boundary conditions in the presence of optical injection read in general

E+ (0, t) = rlE− (0, t) + tlE+ (1, t) + Y+ (t) , (II.11)

E− (1, t) = rrE+ (1, t) + trE− (0, t) + Y− (t) , (II.12)

with rl and rr the reflectivities in amplitude on the left and right facets, tl and tr the transmission

across the left and right facets, and Y± the injected fields coming through the left and right facets.

Both the reflectivities and the transmitivities can be meaningfully complex; they denote a detuning

between the carrier frequency ω0 around which the SVA is performed and the nearest mode of the
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resonator, i.e. they may contain a phase ∼ exp (−iω0L/υg). A negative value is also meaningful in

the case of a cleaved semiconductor-air interface.

In general, the reflection and transmission coefficients are not independent but are linked by Stokes

relations. An unphysical behavior can be obtained if one chooses an inappropriate set of parameters

representing the boundary conditions. A salient example could be that if r = 1 then one must impose

t = 0 and also Y± = 0, to reflect the fact that one cannot inject light trough a perfectly reflecting

mirror. Also, using values of t and r such that |t|2 + |r|2 > 1 could give surprising results.

It is very useful to express the boundary conditions in a matrix form that link the output (resp.

input) fields exiting (resp. entering) the cavity, on the left and on the right, respectively. Defining

the following vectors,

xout (t) =

 E
(1)
− (0, t)

E
(1)
+ (1, t)

 , xin (t) =

 E
(1)
+ (0, t)

E
(1)
− (1, t)

 , y (t) =

 Y+ (t)

Y− (t)

 (II.13)

we can write Eqs. (II.11,II.12) as

xin = BCxout + y (II.14)

with the following definition of the boundary condition matrix

BC =

 rl tl

tr rr

 (II.15)

This approach can be readily generalized to the case of multiple sections and to coupled devices,

e.g. by simply considering that the output fields of one section play the role of the external injection

field into another one. This extension is performed in Section IVE and it is used in one of the

examples, namely the study of a two sections Fabry-Pérot laser with saturable absorber presented

in section VC. At last, one can also use the boundary conditions matrix to simulate the coupling

between two sections having different transverse mode profile. In this case the transmission and

reflection coefficients contains the spot ratio of the mode in the different sections.

D. Dispersion relation

The Slowly varying approximation means that all spatial and temporal rotations, i.e. exp (−iωt)

and exp (−iqx) have to be understood with respect to the expansion point (ω0, q0). For instance,

something that is steady in time is actually rotating with an angular frequency ω0. This is also true

in space. The only remaining sign in Eqs. (II.2-II.9) of this quite subtle point is the damping term

of the carrier grating that reads 4Dq2
0. Even if the SVA fields E± are constant in space, the grating

experience a strong diffusive damping since the actual forward and backward waves rotates at ±iq0z.
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What relates the variation in ω to the variation in q is the group velocity υg, and since space (resp.

time) is normalized to the empty cavity length (resp. time of flight), this amount to have υg = 1.

However, when the cavity is filled with an active material, i.e. χ0 6= 0, it modifies the dispersion

relation of the waves: a steady temporal profile will not correspond exactly to a steady spatial profile

and the group velocity is slightly modified.

Assuming that we are propagating in an infinitely long medium in order to neglect the effect

of the boundary conditions, inserting monochromatic waves at frequency ω in Eqs. (II.2-II.9) as

E± (z, t) = ε exp [i (±qz − ωt)], the dispersion relation relating the real part of the wavevector and

the optical frequency reads

−ω + q = χ0< [χ (ω,D)] , (II.16)

where we assumed that the waves are of such small amplitudes that the carrier density remains a

constant. Making an expansion of a wave packet around a frequency Ω, we have

q (ω)− Ω = qΩ +
1

υ
(ac)
g

(Ω− ω) +O
{

(Ω− ω)2} , (II.17)

qΩ = χ0< [χ (Ω, D)] , (II.18)

υ(ac)
g =

{
1 + χ0<

[
∂χ

∂Ω
χ (Ω, D)

]}−1

. (II.19)

For an empty cavity, we would have q = Ω and hence E± (z, t) = ε exp [±iq (z ∓ t)] = A± (z ∓ t).

When the active material is present, as noted in the Eq. (II.18) there is an additional shift qΩ that

can be of the order of π, which can induce an extra spatial rotation in the cavity of the field profile

as compared to the associated temporal variation. Also apparent in Eq. (II.19) the group velocity

υ
(ac)
g is modified as well. Notice that in a lasing regime the population inversion is neither constant

in space nor in time.

The influence of the active material on the dispersion relation is particularly meaningful for DFB

related numerical experiments. For instance, one may try to tune the DFB to the gain peak, which

is achieved by choosing the Bragg wavevector equal to the one corresponding to the gain peak, see

for instance the example VD and the next section.

E. Bragg grating

In the case of a simple grating without chirp, we want to establish here that tuning of the Bragg

wavelength can be achieved by introducing a harmonic complex spatial variation in the coefficient

κ± in Eq. (II.30) and that the stop band of the photonic crystal is (2 |κ|). It should be immediately

clear by inspecting Eq. (VI.17) that any harmonic residual variation of κ± is proportional to (twice)

the detuning between the carrier wave-vector expansion point q0 and the Bragg wavelength, i.e.
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2δ = 2 (β − q0). It simply means that the expansion point q0 is detuned with respect to β the Bragg

wavelength. Since the SVA expansion point q0 is fixed, tuning the grating amounts to tune β and

therefore δ. Assuming that κ± = κ0 exp (±2iδz), the following transformation

E± = A± (z, t) exp [iδ (±z − t)] ,

P± = B± (z, t) exp [iδ (±z − t)] , (II.20)

ΩG = ΩG − δ,

applied to Eqs. (II.30-II.9) simplifies the spatial variation of κ±: we moved from the SVA frame

(q0, ω0) to a new one corresponding to the Bragg frequency (q0 + δ, ω0 + δ) = (β, ωβ).

Performing the change of variable presented in Eq. (II.20), leave us to find the dispersion relation

of the simplest of the photonic crystal for which the coupling between the forward and backward

waves is a constant. Still, this constant can be meaningfully complex and we denote its phase Φ,

i.e. κ0 = |κ0| eiΦ. The phase of κ0 reflect if the periodic index modulation at z = 0 is a node or an

anti-node. We refer the reader to the section VI and more specifically to the discussion regarding

the derivation of Eq. (VI.17). In the presence of a constant gain, neglecting the small population

grating for simplicity and searching for monochromatic solutions of Eq. (II.2) as

A+ = v1 exp {i [k (µ) z − µt]} , (II.21)

A− = v2 exp {i [k (µ) z − µt]} , (II.22)

transform Eq. (II.2) into the following linear system linking the wave-vector and the frequency

{λ+ i [χ (D0, µ)− µ+ k (µ)]} v1 + iκ0v2 = 0 , (II.23)

{λ+ i [χ (D0, µ)− µ− k (µ)]} v2 + iκ?0v1 = 0 . (II.24)

The system defined in Eqs. (II.23,II.24) possesses non trivial solutions if the determinant is zero,

which defines the dispersion relation within the grating as

k2 (µ) = −{λ+ i [χ (D0, µ)− µ]}2 − |κ0|2 . (II.25)

To simplifies further the obtained result we need to assume the following

• Propagation in an infinite medium in order to neglect boundary condition effects.

• The broad gain bandwidth allows to neglect its dispersion over the stop band.

• The material gain compensates for the losses, i.e. λ−= [χ (D0, µ = qΩ)] = 0.

Considering the above three points we get, with qΩ defined in Eq. (II.18),

k± (µ) = ±
√

(µ− qΩ)2 − |κ0|2. (II.26)
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Figure II.1: Normalized real and imaginary part of the wavevector k associated to the frequency µ. The

black dashed lines represent the asymptotic free propagation out of the stop band, i.e. k = ± (µ− qΩ). The

value of qΩ is exaggerated for clarity reasons.

One can see the result of Eq. (II.26) represented in Fig.II.1. The stop band is centered on µ = qΩ

and has a width 2 |κ0|. The maximal damping in the DFB is |κ0| and it is obtained at the Bragg

frequency µ = qΩ, for which we have k (qΩ) = ±i |κ0|.

In order to find the transfer function of such a DFB structure of unit length, we need to provides

for the boundary conditions: assuming that

A+ (z = 0, t = 0) = 0 , A− (z = 1, t = 0) = 0 , (II.27)

we find the amplitude and transmission coefficients as

R (µ) =
x+x−

(
eik − e−ik

)
κ0 (x+eik − x−e−ik)

, T (µ) =
x+ − x−

x+eik − x−e−ik
(II.28)

with x± = µ− qΩ − k± (µ). The extremal values are obtained at µ = qΩ and reads

R (qΩ) = e−i(Φ+π
2 ) tanh (|κ0|) , T (qΩ) = cosh−1 (|κ0|) . (II.29)

F. Localized reflections

We want to establish here that a wavelength scale Fabry-Pérot created for instance by etching a

slot into the waveguide, can be modeled as a localized, Dirac like, variation of κ± (z). Although the

case of a weak internal reflection should be treated at the level of the boundary conditions matrix,

e.g. by defining two sections and a boundary condition matrix that would contain an almost unity

transmission coefficient as well as the small value of the internal reflection, the approach presented

13
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here can be useful in the case where one wants to insert a large number of small intracavity reflectors.

Indeed, neglecting internal losses for the sake of simplicity, the wave equations reads

∂zA+ = −iκ0δ (z − z2)A− , (II.30)

−∂zA− = −iκ?0δ (z − z2)A+ . (II.31)

integrating from z = z1 to z = z2 and z = z2 to z = z3, we get by using the trapezoidal integration

method

A2
+ − A1

+ = −iκ0

2
A2
− , A1

− − A2
− = −iκ

?
0

2
A2

+ , (II.32)

A3
+ − A2

+ = −iκ0

2
A2
− , A2

− − A3
− = −iκ

?
0

2
A2

+ . (II.33)

From that, assuming no light is coming from the right, i.e. A3
− = 0 and A1

+ = 1, we get

A3
+ = T =

1−
∣∣κ0

2

∣∣2
1 +

∣∣κ0
2

∣∣2 , A1
− = R =

−iκ0

1 +
∣∣κ0

2

∣∣2 (II.34)

Also, assuming that no light comes from the right, i.e. A1
+ = 0 and A3

− = 1, we get

A1
− = T ′ =

1−
∣∣κ0

2

∣∣2
1 +

∣∣κ0
2

∣∣2 , A3
+ = R

′
=
−iκ?0

1 +
∣∣κ0

2

∣∣2 . (II.35)

Notice that it implies that TT ′ −RR′ = 1 or equivalently, |T |2 + |R|2 = 1.
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III. NUMERICAL METHODS

A. Numerical description

1. Spatial discretization

We define a discretized representation of the continuous variables along the resonator section and

we choose an identical spatial and temporal discretization. Assuming that the discretization step is

h = 1/N with N ∈ R, we define a sampled spatial and time axes as

zj = h

(
j − 1

2

)
(III.1)

tn = hn (III.2)

with j ∈ [1..N ] and n ∈ R. We denote the sampled quantities in space-time as

(X)nj = X (zj, tn) . (III.3)

One can see that the first and the last spatial points are shifted of half a spatial increment h with

respect to the left and right mirrors, i.e. z1 = h/2 and zN = 1 − h/2. It means that the cavity is

composed of N − 1 intervals of length 1/N and two smaller intervals of length 1/ (2N), one at the

beginning and one at the end.

2. Nyquist frequency & aliasing

We define here an important quantity that is the Nyquist frequency. One can associate to a

discretized profile in space (or in time) that consists of N points an dimensionless Nyquist frequency

which reads

ΩN =
π

h
= πN (III.4)

This physically means that in between two successive points, a profile oscillating at ΩN is per-

forming half a complete rotation. As such, by inspecting the profile it is impossible to distinguish

if the rotation is performed clockwise or anticlockwise. If one tries to rotate faster than +ΩN one

is indeed rotating a bit slower than −ΩN , and vice versa. A frequency is called “resolved” if it is

smaller in absolute value than ΩN , otherwise it is called “aliased”.

3. CFL condition

One can notice that, since the time is scaled to the single trip in the cavity and that space is

scaled to the resonator length, by assuming an identical discretization in space and in time, we are
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automatically working exactly at the Courant-Friedrichs-Lewy (CFL) condition[15] of the cold cavity.

In other words since we choose an identical spatial and temporal discretization steps with an unity

velocity, we have that c∆t = ∆z.

It is the common use to work below the CFL condition in order to introduce numerical dissipa-

tion to the high, unwanted and/or unphysical, spatial and temporal frequencies. In addition, most

numerical algorithm are marginally stable when then operate exactly at the CFL condition. This is

also the case here.

However, the broad gain curve of the semiconductor material imposes a very weak damping on the

different wavelengths. If we were to work below the CLF condition and thus introducing numerical

dissipation we would spoil the real dynamics that stem from the weak differences of gain between

different modes. In conclusion, we work at the marginal conservative stability limit of the numerical

scheme and let the active medium polarization performs the damping at high frequencies.

4. Staggered Boundary conditions

The discretized ensemble of points does not contain elements on the boundaries. One could think

that this somewhat not obvious choice may render applying the boundary conditions difficult but it

is actually the best option to impose them properly. By extension, the fields on the boundaries are

denoted by fractional indexes j = 1/2 and j = N + 1/2 since indeed, z 1
2

= 0 and zN+ 1
2

= 1. In this

discretized notation, the boundary conditions given by Eqs. (II.11,II.12) reads

(E+)
n+ 1

2
1
2

= rl (E−)
n+ 1

2
1
2

+ tl (E+)
n+ 1

2

N+ 1
2

+ (Y+)n+ 1
2 , (III.5)

(E−)
n+ 1

2

N+ 1
2

= rr (E+)
n+ 1

2

N+ 1
2

+ tr (E−)
n+ 1

2
1
2

+ (Y−)n+ 1
2 , (III.6)

The equations Eqs. (III.5,III.6) have been written at the time
(
n+ 1

2

)
since it is actually at these

intermediate time steps that they are used and that the external injected fields shall be provided. We

refer the reader to Section VIII for more detail on this point as well as on the numerical algorithm.

B. Numerical accuracy

In this section we answer to the natural question :

“How small must be the time step in order to reach convergence?”

First, one shall notice that there is no time step in our integrator, which we explain below.

Instead, one has to choose the spatial discretization which transforms the question into

“How many points in space are necessary to reach convergence?”

Since the optical response is given by an integral equation a last question would be

“How many points in the past are necessary to reach convergence?”
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1. Where is the time step?

Due to the nature of the advection equation, the spatial discretization and the temporal one must

not be considered independently and shall be linked by the so-called CFL condition [15]. As such,

we made our best for the user to not be able to change the time step which explains why it is not

a parameter of the integrator. Instead, for one cavity length, one can choose the number of spatial

points N from which the appropriate time step is deduced simply as ∆t = τc/N , with τc the time

of flight in the resonator. Once that the time step is defined, there is one function gnr_uni_param

that is scaling all the physical parameters given in inverse second by it.

2. How many points in space?

One needs to overcome the main numerical stiffness of the problem which stem from the top of

the band frequency ΩT defined in Eq. (II.9), i.e. the maximal frequency above which the material

becomes again transparent, with respect to the bandgap frequency ΩG. This frequency must not be

aliased which amounts to say that

τc (ΩT + ΩG) ≤ ΩN . (III.7)

Also the variation of all the other parameters over a time (or spatial) increment must remain

relatively small, i.e.

τc max (λ, |κ| , γ, χ0, A,B,C) ≤ aN (III.8)

A heuristic value would be a ∼ 0.2. However, the condition given by eq.III.7 is usually the most

demanding. There is a function called gnr_good_discr that for a given ensemble of parameter and

for a given cavity length, provides an adapted discretization, see subsection III B 4 below for details.

3. How many points in the past?

Since the polarization of the active medium given in Eq. (II.7) is a convolution integral from

t ∈ [0...−∞], one should keep in principle an infinite segment of the past history of the system.

However, the polarization only has a finite memory time that is proportional to the intra-band

relaxation time γ, i.e. the convolution kernel is non zero for some given duration. As such, keeping

a segment of length

tM = M∆t ∼ 6

γ
, (III.9)
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is sufficient, which definesM as the nearest integer to 6N/ (γτc). The value of 6 is heuristic and quite

on the safe side. This this value that is used in the function gnr_good_discr in order to provide for

an appropriate value of M .

The function call reads [ M , N , dt ] = gnr_good_discr( tau_c , par ) where the first

and second argument are the single trip within the resonator and the vector containing the sixteen

parameters of the model.

4. Scaling multiple devices

One can see in Eqs. (III.5,III.6) that the only possible interaction of a section with another one

is via the boundary conditions. Therefore, the output of one device will become optical injection

for another one, and possibly vice-versa. If the coupling between different sections arise only from

the boundary conditions, one must apply them simultaneously which justify the need of an identical

temporal sampling of the variables. Doing otherwise would require a demanding, possibly inaccurate,

interpolation of the coupling fields.

In the case of the simulation of multiple coupled lasers of different lengths, an identical sampling

in time can be achieved by simply calling the function gnr_good_discr with two different cavity

lengths as for instance

[ M1 , N1 , dt1 ] = gnr_good_discr( tau_c , par )

[ M2 , N2 , dt2 ] = gnr_good_discr( tau_c/2 , par )

Here for instance, the second device will have N2 = N1/2 although the number of points in the

past M1,2 shall be identical since the material parameters are the same.

A note of caution though. The number of spatial points is an integer and the time step is divided

by it. If the length of the two section are not commensurate the two time steps dt1 and dt2 may be

very close but not identical. In this case the time of flight of the two sections must be slightly tuned,

otherwise the two sections can not work meaningfully with each other.

C. Numerical susceptibility

We discuss in this section the function called gnr_chi_plot that allows to perform a comparison

plot between the analytical susceptibility obtained for the case of a monochromatic wave and a

constant population inversion D0 and the numerical results of [2, 16], when the convolution integral

is performed numerically by the trapezoidal method from a discretized optical field.

The use of the function gnr_chi_plot is threefold. First, it allows to check if the material pa-

rameters defining the optical response, for a given section length, are in adequacy with the numerical
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discretization, i.e. ∆t or N and M . Second, it allows to estimate the aforementioned useful quan-

tities as the differential gain and the α factor. In addition, it also provides a representation of the

differential gain and index as well as a graph of the electron and hole distribution for the given

population inversion.

The function call reads

[g_m,om_m,dg_dD,alpha] = gnr_chi_plot( D0,M,dt,[gma,om_g,om_t,gma_c,gma_v] ) where

the input arguments at this stage shall be easily understood. The output arguments are g_m the

value of the gain peak that run between −1 and +1, i.e. without the χ0 prefactor of eq.II.7, om_m

the frequency of the corresponding gain peak, dg_dD the differential gain at the frequency om_m and

the Henry’s linewidth enhancement factor alpha. The differential index change can be deduced as

−αdg/dD. When the gain peak is not defined, the band-gap frequency is assumed for the output

argument.

1. Aliasing and fidelity

The polarization and hence the susceptibility has to be numerically computed from the past values

of the local field and carrier density, which poses several problems. The numerical implementation

of the convolution algorithm is discussed both in [2] and in the appendix VIIIE. The numerical

integration requires the temporal discretization of the optical field and imposes that the convolution

has to be done from a signal obtained with a finite sampling rate which induces aliasing and fidelity

problems [2].

1. When the top of the band frequency is a bit too large, it becomes aliased and reenters on

the negative frequency side. This artefact may be used if needed to damp energy on the high

negative frequency side. However, it may also cause, unphysical, strong optical absorption

below the band-edge, see Fig.III.1.

2. Wen the top of the band frequency is chosen really too large, besides aliasing, one experiences

a branch jump and the gain becomes always negative. The refractive index is also shifted, see

Fig.III.2.

3. When the number of point kept in the past is too small, the gain and the index are poorly

fitting and exhibit an oscillation, see Fig.III.3.
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Figure III.1: Normalized gain and refractive index. Green and the blues lines represent the band-gap

frequency and the maximal energy corresponding to the top of the band, respectively. The command line

we used is gnr_chi_plot(3,24,12.5e-12/400,[8 10 100 0.8 8]*1e12);

2. Differential gain & alpha factor

One notice that in the model defined by the Eqs. (II.30-II.9) one does not meet the usual suspects

of laser physics as for instance the maximal and differential gain or the so-called alpha factor. It is

simply because these quantities are defined self consistently by the full ensemble of parameters. In

particular, they are related to the threshold carrier density. Above the lasing threshold the carrier

density will either clamp around the threshold value or oscillate around it during e.g. the relaxation

oscillations. The value of the inversion at threshold can be obtained by performing the linear stability

analysis of the off solution. The differential gain and the alpha factor are defined by the total losses

(including the losses induced by the boundary conditions) in the cavity: higher losses imply a higher

carrier density at threshold and therefore a lower differential gain and a larger alpha factor. Assuming

that the value of the carrier density at threshold is Dth = 3, calling the function gnr_chi_plot with

some output arguments gives

[g_max,om_max,dg_dD,alpha]=gnr_chi_plot(3,24,12.5e-12/400,[8 10 100 0.8 8]*1.e12)

g_max = 0.3852

om_max = 1.7812e+13

dg_dD = 0.1665
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Figure III.2: Normalized gain and refractive index. The Green and the blues lines represent the band-gap

frequency and the maximal energy corresponding to the top of the band, respectively. The command line

we used is gnr_chi_plot(3,24,12.5e-12/400,[8 10 300 0.8 8]*1e12);

alpha = 1.2895

3. Gain bandwidth

Similarly, one notice that for larger carrier densities, the effective full width at half maximum

of gain bandwidth will be larger as a consequence of the increased Bernard-Durrafourg condition

as seen in Fig.III.4. The same argument is true for the effective carrier lifetime which is given by

dR/dD (Dth) implying for instance a shorter gain recovery for a larger population at threshold.

D. Sparse mesh

Numerical time integration has to be carried out along the so-called characteristic lines, as dis-

cussed in Section IIIA 3 and also in the appendix VIII. The normal stencil that one would use in the

case of e.g. a two level atom as discussed in [17], would be like the one presented in Fig.(III.5), left

panel, where propagating waves are advected from one grid point from the left and from the right,

while the polarization is given by the response of a local two level atom. Since the temporal and the
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Figure III.3: Normalized gain and refractive index. Green and the blues lines represent the band-gap

frequency and the maximal energy corresponding to the top of the band, respectively. The command line

we used is gnr_chi_plot(3,4,12.5e-12/400,[8 10 100 0.8 8]*1e12);

spatial discretization are linked by the CFL condition [15], broad semiconductor gain curves may

force the user into using small time steps which in turn would induce a prohibitively large spatial

discretization as well as a very long CPU time. Indeed, dividing the time step by two implies a CPU

time multiplied by four since the number of variable is also multiplied.

We exploit here the possibility given by the delayed memory that is kept in order to calculate the

semiconductor response for advecting the fields from a farther distance both in space and in time,

effectively decreasing the number of degrees of freedom that are active. In addition, this allows to

decouple the spatial and the temporal discretization. The result of this procedure can be observed in

Fig III.6. In this case, one may consider that the PDEs are recasted into a system of coupled DAEs.

From the difference between the full and the sparse grid schemes represented in the figures III.5 and

III.6 we termed this technique decimation. Notice also that the decimation factor can be different

for different sections.
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Figure III.4: Normalized gain and refractive index for increasing values of the carrier density,D0 = 0, 1, 2, 4

and 6. The Green and the blues lines represent the band-gap frequency and the maximal energy corresponding

to the top of the band, respectively. The command line we used is gnr_chi_plot(...,24,12.5e-12/400,[8

10 100 0.8 8]*1.e12)
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Figure III.5: Left panel: traditional stencil for wave advection. The left (resp. right) propagating waves,

represented in red (resp. blue), are advected from one grid point from the left (resp. right), while the

polarization in green is given by a local two level atom response. Right panel: the dynamical response of

the semiconductor medium implies that a segment of past values of the field which are represented in green

must be kept. The magenta vertical lines represent boundary conditions linking two sections with possibly

different optical properties.
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 z = (j−1/2)× h 

 t
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Figure III.6: Wave advection over a sparse spatial grid. The waves are advected from more distant point

both in space and in the past. The decimation factor of the two sections can be different.

IV. PROGRAM INTERFACE

A. Function list

We give in the subsection a list of the functions of the toolbox, a short description as well a link

to the pages where they are fully documented. Notice also that typing help function_name gives

also detailed information.

1. freetwm(...) is the main function. It is the time integrator that propagates in time an initial

condition. This function is described in Section IVB. It is used in all the examples.

2. gnr_uni_param(...) creates an uniform spatial profiles from the 16 parameters used in the

model described in II. It also scales the parameters given in inverse second by the time step

used in the time integration. This function is documented in section IVD2. It is used in all

the examples.

3. gnr_good_discr(...) return an appropriate number of spatial points and the temporal ex-

tent of the memory to kept as well as the according time step. This choice is done on the basis

of the value of the 16 parameters used in the model described in II and of the cavity single

trip. This function is documented in sections III B 3, III B 4 and III B 2. It is used in all the

examples.

4. gnr_uni_msh(...) creates an spatial profiles of the variables containing a random pertur-

bations to be used as an initial condition for starting time integration. This function is docu-

mented in section IVC2. It is used in all the examples.

5. gnr_msh_plot(...) plot the spatial profiles of the various variables as the field, the carriers

as well as the population grating within a section.containing a random perturbations to be
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used as an initial condition for starting time integration. The use of this function is trivial and

therefore not documented. See for instance the Fig. V.5 in section VB.

6. gnr_chi_plot(...) plot the real and imaginary part of the optical susceptibility as a function

of the frequency of the field, for a given value of the population inversion. It helps to visualize

important facts, as for instance the frequency detuning between the gain peak of the gain

section and the band-edge of saturable absorber section. In addition, it allows comparing

the accuracy of numerical approximation used in the time integration to the susceptibility by

comparing it with the analytical result. This check is a way to assess the adequacy of the time

integration step. The use of this function can be seen for instance the Fig. V.7 in Section VC.

This function is documented in Section III C.

7. OpticalSpectrum(...) simply perform the Fourier transform of the complex optical field

amplitude via the Fast Fourier Transform method. Notice that the FFT convention is “inverse”

as we are working in minus representation, therefore the function use the IFFT routine. A

standard Hanning apodisation window is used. This function is used in Section VD.

B. Integrator command line

In order to discuss the integrator command line, we assume that we are considering the case of

the simulation of V sections during K integration steps, while sampling the output data every S

points, using a decimation factor D, in the presence of optical injection. Each section contains N (v)

spatial points and a memory kernel, i.e. a past history, of M (v) points. The integrator command

line use the nice feature of Matlab & Octave that allows to have a variable number of input and

output in a same function. It reads in the general case

[ trace , Msh_1o ,..., Msh_Vo ] =

freetwm( K, V, S, Msh_1i, Par_1, D_1,..., Msh_Vi, Par_V, D_V, BC, Inj, Mod );

We discuss in the next section the meaning, the types and the dimensions of all the input and

output arguments, although we enclose below a short description.

1. Inputs

Besides the first three straightforward arguments K, V and S, the input arguments are the ini-

tial condition spatial profiles Msh_i followed by their respective parameters spatial profiles Par_i,
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their respective decimation factor D, as many time as there are section. Next, comes the boundary

condition matrix BC that connects the inputs and the output of the different sections. The last two

arguments are the time dependent external forcing that stem from optical injection Inj and param-

eter modulation Mod. Notice however that their presence is optional: in their absence, one assumes

that there are no external forces.

2. Outputs

The output arguments are the time trace tr, that corresponds to the two outputs of each section,

and the final conditions spatial profiles Msh_o.

3. Caveats

One should try to avoid naming variables profiles Mesh, mesh or MESH since this can generate

confusion with an already existing Octave and Matlab function. Also, one shall try if possible to

perform at least 100 integration steps in order to compensate the overhead of entering and exiting

the mex function.

C. Input variables

1. Definition and organization

The variables are arranged in a three dimensional complex array. We have

Msh ∈ CM×N×6,

which corresponds to

Msh (m, j, 1) = E+ (tn−m+1, zj) ,

Msh (m, j, 2) = E− (tn−m+1, zj) ,

Msh (m, j, 3) = hP+ (tn−m+1, zj) ,

Msh (m, j, 4) = hP− (tn−m+1, zj) ,

Msh (m, j, 5) = D0 (tn−m+1, zj) ,

Msh (m, j, 6) = D2 (tn−m+1, zj) ,

with m ∈ [1,M ] and j ∈ [1, N ]. The imaginary part of D0 should be set to zero although it is

ignored in the input and put to zero in the output. Notice that for convenience reason the polarization

is scaled by the time step, upon time integration.
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2. Uniform initial condition

In order to start a simulation one must generate spatial profiles where the fields and polarizations

in each direction, as well as the carrier population grating, are set to small, spatially fluctuating,

values. The carrier density must also be set meaningfully, like for instance around the threshold or

the transparency value. This is achieved by the function msh = gnr_uni_msh( M , N , sigma ,

D_eq ); This will add a Gaussian fluctuation of variance sigma to all variables that are set to zero

excepted the carriers that centered at D_eq. In the case of noiseless dynamics, i.e. β = 0, putting a

noisy initial condition is important as it gives a multimode initial condition. Otherwise, one could

get unphysical behavior in which the dynamics is always monomode.

D. Input parameters

1. Definition and organization

The parameters are arranged in a two dimensional real matrix, we have

Par ∈ R16×N . (IV.1)

They can be separated in three groups that control the dynamics of the waveguide, of the material

response and of the carriers, respectively.

The waveguide: It is defined by three parameters that correspond to the internal losses in

amplitude, and the real and imaginary part of the distributed coupling, i.e.

Par (1, n) = λ (zj) ,

Par (2, n) = < [κ+ (zj)] , (IV.2)

Par (3, n) = = [κ+ (zj)] .

The material optical response: It is controlled by seven parameters which correspond to the

modal gain in amplitude , the optical bandwidth, the position of the band-gap frequency, the energy

of the top of the band and the dimensionless parameters ac,v that control the influence of the thermal

quasi-equilibrium distribution of the electron and of the holes. A last parameter is the amount of

spectral hole burning into the quasi-equilibrium Fermi distribution. For the moment, these last three

parameters are not used.
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Par (4, n) = χ0 (zj) ,

Par (5, n) = γ (zj) ,

Par (6, n) = Ωg (zj) , (IV.3)

Par (7, n) = ΩT (zj) ,

Par (8, n) = γc (zj) , (IV.4)

Par (9, n) = γv (zj) , (IV.5)

Par (10, n) = εshb (zj) .

The carrier and the grating: Its dynamics is determined by five parameters which are the bias

current, the linear, bilinear and Auger recombination terms and the grating diffusion rate at the

operating wavelength 2π/q0,

Par (11, n) = J (zj) ,

Par (12, n) = A (zj) ,

Par (13, n) = B (zj) , (IV.6)

Par (14, n) = C (zj) ,

Par (15, n) = 4Dq2
0 (zj) .

• At last, the variance of the Gaussian delta correlated white noise reads

Par (16, n) = β (zj) . (IV.7)

All the parameters are given in inverse second. They must be subsequently scaled by the time

step, which in the case of a single section of N point, is equal to the time of flight in the cavity

divided by the number of spatial point, i.e. dt = tau_cav/N ;

2. Uniform parameter set

Even when the parameters are uniform in space, they must be defined at each point, this is

achieved by the function gnr_uni_param that besides extending the parameters in space scale them

by the time step. For instance defining a vector par whose 16 elements contains the parameters, the

following script

dt = tau_cav/N ;

Par = gnr_uni_param( N , dt , par ) ;

generate a matrix Par of dimensions R16×N that contains the scaled parameters profile.
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E. Input boundary conditions

The boundary condition are written simply as an input-output relation as presented in section

IIC, i.e xin = BCxout + y and as such BC is a complex two dimensional array,

BC ∈ C2V×2V . (IV.8)

The three vectors xout, xin and y are defined, internally, as

xout (t) =



E
(1)
−

(
z 1

2
, tn+ 1
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−
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)


, xin (t) =



E
(1)
+

(
z 1

2
, tn+ 1

2

)
E

(1)
−

(
zN(1)+ 1

2
, tn+ 1

2

)
...
...

E
(V )
+

(
z 1

2
, tn+ 1

2

)
E

(V )
−

(
zN(V )+ 1

2
, tn+ 1

2

)


, y =
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(IV.9)

Optical injection can be performed into the forward direction of the first section and into the

backward direction of the last section, only. The boundary condition must be complex for the

function freetwm as such if all the coefficient are real one must "complexify" it by using the Matlab

& Octave function BC=complex(BC) .

F. Input optical injection

The optical injection is given by a two dimensional complex matrix

Inj ∈ CK×2. (IV.10)

It corresponds to

Inj (k, 1) = Y+

(
tk+ 1

2

)
Inj (k, 2) = Y−

(
tk+ 1

2

)

G. Parameter modulation

The parameter modulation is given by a two dimensional real matrix

Mod ∈ RK×3. (IV.11)
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The first, second and third columns correspond to the modulation of the bandgap Ωg, the bias

current J and the linear recovery time A.

Mod (k, 1) = Ωg

(
tk+ 1

2

)
Mod (k, 2) = J

(
tk+ 1

2

)
Mod (k, 3) = A

(
tk+ 1

2

)

H. Output time trace

The output is a multidimensional complex array that contains the field outputs of each section at

each facets at the half integer time steps in addition of the carrier and of the population grating at

the first and at the last point at integer time steps. We have

trace ∈ CKS×6×V (IV.12)

which corresponds to

trace (k, 1, v) = E
(v)
−

(
tS(k−1)+ 1

2
, z 1

2

)
(IV.13)

trace (k, 2, v) = E
(v)
+

(
tS(k−1)+ 1

2
, zN(v)+ 1

2

)
(IV.14)

trace (k, 3, v) = D
(v)
0

(
tS(k−1), z1

)
(IV.15)

trace (k, 4, v) = D
(v)
0

(
tS(k−1), zN(v)

)
(IV.16)

trace (k, 5, v) = D
(v)
2

(
tS(k−1), z1

)
(IV.17)

trace (k, 6, v) = D
(v)
2

(
tS(k−1), zN(v)

)
(IV.18)

with k ∈ [1, KS] and KS = ceil (K/S). One can see that the first two columns have exactly the

form of an optical injection. In this way, one can easily perform passive-active integration, as it is

explained in section VF by feeding the time trace back as optical injection. It can also be used to

easily make a delayed feedback experiment.

I. Output variables

the function returns the spatial profiles after the KS integration steps, i.e. variables arranged in

a three dimensional complex array. We have

Msh ∈ CM×N×6.
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J. Compilation

This section describes the instructions to follow in order to compile the program on your specific

platform. We have tried to make the code as portable as possible without compromising the per-

formances. In this respect, running the benchmark in the folder /Example and comparing to the

obtained results in the Table I is a good idea.

The Math Kernel Library library is used only for its Mersenne twister uniform random number

generator and for its Gaussian random number generator via the inverse cumulative distribution

method. In the absence of the Math Kernel Library, one is simply using a congruential uniform

generator in conjunction with a Box-Muller method in order to obtain Gaussian random numbers.

1. Compilation flags

There are a few useful compilation options that can be modified from their default values. The

compilation flags are accessible in the makefile (for Linux and Mac OS X). The full list is as follow.

The default options are indicated in boldface.

• DBG={0,1,2}. Correspond to no messages at all, normal input-output messages, and debug-

ging error messages.

• HAVEMKL={0,1}. Choose between the mkl and the gcc random number generators.

• UNI_RNG_METHOD=VSL_BRNG_{MT19937,MT2203,MCG59,MCG31,WH}. If the

mkl option is chosen, specifies which random generators has to be used.

• SEED={380116160}. Seed used to initialize the random number generator (both mkl and

gcc) on the first call.

• REAL={double , float}. Allows running in single or double precision.

• SCALING_FACTOR={0.00125}. Arbitrary value of s used in Eqs. (II.3-II.4).

• APPROX={1,0}. Perform the approximation given by Eq. (II.10) in order to speed up the

evaluation of the convolution kernel.

2. Linux / Mac OS X

There is a makefile in the folder /FreeTwm/System that is supposed to take care of most of the

compilation idiosyncrasies and that allows to link the mex file to either Octave or Matlab. The

makefile was designed for Ubuntu Linux 10.04 LTS 64-Bits with either Octave 3.2.4 or Matlab
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2008b or for Mac OS X lion (10.7) with Xcode 4.2, llvm-gcc-4.2, and Matlab 2011a. It should

work well with other versions.

The first lines of the makefile should be adapted to your platform: for example, the exact path of

the Math Kernel Library, and the Octave or Matlab installation directory has to be corrected.

the Xcode SDK on Mac OS X should also be provided. One can find in the first lines of the makefile

an access to the user defined compilation flags discussed above. Creation of the executable is made

with the simple command make VERSION with the following, self explanatory values of VERSION:

Matlab_Gcc,Matlab_Gcc_Openmp,Matlab_Icc,Matlab_Icc_MKL,Matlab_Icc_MKL_Openmp,

Octave_Gcc,Octave_Gcc_Openmp,Octave_Icc,Octave_Icc_MKL,Octave_Icc_MKL_Openmp.

In order to build a Mac OS X version simply use the following values of VERSION,

Matlab_Gcc_OSX, Matlab_Gcc_Openmp_OSX. This will generate the appropriate executable file with

either a .mex extension for Octave or a .mexa64 extension for Matlab on Linux and .mexmaci64

on Mac OS X. If everything goes well, a success message on the console should appears, like for

instance

--- Binary for Matlab with : -----Intel Compiler and MKL----- Created !---.

Notice that only gcc is supported on Mac OS X although a combination of the Intel Compiler

with Matlab on Mac OS X should work. However, the Intel Compiler is not free of charge on

OS X as it is on Linux.

Before starting Octave or Matlab from the shell console you shall specify the number

of processor to use with the command export OMP_NUM_THREADS=2 (for example). Also, be-

fore starting Matlab from the console, in the case one uses openmp one should enters export

KMP_DUPLICATE_LIB_OK=TRUE.

The linking toward the Math Kernel Library is static, which means that the code can run

on a cluster where it is not installed. It is also useful to prevents possible conflict between different

versions of Math Kernel Library.

3. Windows

On Windows, one can add to the compilation command within the Matlab console the com-

mand -D. For instance mex -DSEED=42 or mex -DUNI_RNG_METHOD=VSL_BRNG_MCG59. You may want

to edit our mexopt.sh file in order to put some optimization flags. Notice that a combination of the

Intel Compiler with Matlab on Windows also works. However, the Intel Compiler is neither

free of charge on windows for educational and research activities as it is on Linux. In this case, you

would also need to install at least Microsoft Visual Studio 2008 SP1, that is free on 32-bit systems

but not on 64-bit systems. Notice that using the Intel Compiler is the only way on the Windows
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Number of processor 1 2 3 4

Gcc 61 - - -

Gcc + Openmp 61 40 35 35

Icc 52 - - -

Icc + Openmp 52 35 30 30

Icc + Openmp + Mkl 40 20 15 12

Table I: Indicative performance benchmark for different platforms. The numbers represents the wall time in

second needed to perform 2× 105 steps, which corresponds to 500 single trips.

64bit platform since none of the others Matlab supported free compilers works. For instance, the

free compiler provided by Microsoft, Visual C++ 2010 Express, does not work. The reason being

simply that Microsoft does not support complex numbers in C, which were introduced in the

so-called 1999 revision. Unless we adapt our code from C-99 to C++, the Windows compatibility is

not likely to improve.

4. Benchmark

After a successful compilation, by running the script benchmark.m in the folder Examples/ and

comparing with table I, one may get an idea regarding how optimal are the performance. Table I

was obtained on a Core i5 760 @ 2.8 GHz. These results help to mitigate the possible improvements

that can be obtained with a multiprocessor machine. At least, for the typical situation used in the

benchmark, an one millimeter Fabry-Perot laser, using more than two processors is not efficient. One

can expect however a better scaling of the performances for longer lasers and hence more demanding

spatial discretizations. The performance are identical for both Octave and Matlab.

V. EXAMPLES

We comment in this section the content as well as the results generated by the example scripts

that can be found the folder FreeTwm/Examples/. The script files are also heavily commented. The

first example is very detailed, once understood, the rest is quite a straightforward extension. The

examples use “cell mode” and can be executed by block (Ctrl+Enter) with Matlab. If you are

using Octave, that do not possess an editor per se, you can either copy paste the blocks, or use the

Matlab mode of Emacs. You can also give a try to QtOctave that is a nice GUI for Octave.

For the sake of definiteness we assume in all the following examples that the transparency carrier

density is Nt = 1× 1018 cm−3 and that the background index is ng = 3.57, hence we can deduce that
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the group velocity is vg = c/ng ∼ 0.84× 108 m/s.

All the examples start by adding to the search path the function contained in Freetwm/System

which is achieved by the command path(path,’../System’). Before running any of the examples,

one should compile the mex function freetwm. To do so, we refer the reader to the section IV J.
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A. Asymmetrical Fabry-Pérot

We assume an asymmetrical laser that exhibits a high reflectivity (100%) on the left facet and a

low reflectivity (5%) on the right one. We are considering here a device of 1.05 mm which corresponds

to a single trip in the cavity of τc = 12.5 ps.

1. Parameters

We start by linking the values attributed to the vector par to physical values.

• The internal losses in intensity are assumed to be 14.4 cm−1, i.e.

2λ = 1440× vg ∼ 12× 1010 s−1

which explain that par(1)=λ ∼ 6× 1010 s−1.

• Since there is no distributed coupling par(2)=par(3)=< (κ) = = (κ) = 0.

• The maximal saturated gain is 72 cm−1, i.e.

2χ0 = 7200× vg ∼ 6× 1011 s−1

which explain that par(4)=χ0 = 3× 1011 s−1.

• The intraband relaxation is τk = 125 fs, hence par(5)=γ = τ−1
k = 8× 1012 rad.s−1.

• The band-gap detuning with respect to the SVA expansion point is 5 rad.THz, hence

par(6)=Ωg = 5× 1012 rad.s−1.

• The frequency of the top of the band is 90 THz, i.e. par(7)=ΩT = 90× 1012 rad.s−1.

• The width of the thermal distribution of the electron and holes are assumed to be par(8)=γc =

8× 1011 rad.s−1 and par(9)=γv = 8× 1012 rad.s−1.

• There is no spectral hole burning hence par(10)=0.

• We fix the current at 18 times the transparency current, i.e. par(11)=150.e08 which cor-

responds also roughly to three times the threshold current. The transparency current is

Jt = A+B + C, which in our case is Jt = 8.1× 108 s−1.

• We assume that the material does not present a lot of defect and as such we assume a low

value of the non radiative recombination coefficient of 10 ns, hence par(12)=A=1.e08.
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• The bi-molecular coefficients is assumed to be 7 × 10−10 cm−3s−1 which yields par(13)=B =

7× 10−10/Nt = 7× 108 s−1.

• The Auger coefficients is 1× 10−29 cm−6s−1, i.e. par(14)=C = 10−29/N2
t = 1× 107 s−1.

• The ambipolar diffusion coefficient is 12 cm−2s−1. Assuming a wavelength of emission of

1.55 µm in air, we obtain par(15)=4Dq2
0 = 1× 1012 s−1 .

• The variance of the spontaneous emission is fixed to par(16)=3× 10−3.

• At last, the boundary condition matrix BC must link the two outputs to the two inputs,

noticing that the reflectivities are given in amplitudes, we have that

BC =

 1 0

0
√

0.05

 (V.1)

2. Discretization and scaling

• Calling the function [ M , N , dt ] = gnr_good_discr(tau_c , par ) gives appropriate

spatial and temporal meshes. The spatial discretization is fixed to N = 400 which implies

a Nyquist maximal frequency ΩN = πN = 1256. The scaled top of the band frequency is

τc (ΩT + ΩG) = 1190, which is below ΩN as it should and ensures stability and fidelity. The

number of values kept in the past is M = 6N/ (τcγ) = 24.

• Since there are no spatial variation of the parameters in this example, a simple call to the func-

tion gnr_uni_param propagates the vector parameter and create a parameter matrix of dimen-

sions 14×N . The use of this function is detailed in Sec. IVD2. Typing help gnr_uni_param

also gives some information.

• A call to the function gnr_chi_plot allows checking that everything is fine, see Fig.V.1,

and allows to foresee the frequency of emission ωp = 1.28 × 1013 rad.THz, although

one must knows the inversion at threshold. The inversion threshold is such that

g_max=
(
τcλ− 1

2
ln
√

1× 0.05
)
/(χ0τc) = 0.399, which in our case implies Dth ∼ 3. The cor-

responding threshold current is Jth = ADth +BD2
th + CD3

th ∼ 68× 108 s−1.

3. Uniform initial conditions

• We create an initial condition corresponding to the off solution. We do so by a call to the

function gnr_uni_msh.The use of this function is detailed in Sec. IVC2. Typing help
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Figure V.1: Normalized gain and refractive index for the threshold carrier density, D0 = 3 . The Green and

the blues lines represent the band-gap frequency and the maximal energy corresponding to the top of the

band, respectively. The peak gain is located around 12 rad.THz.
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Figure V.2: Initial noisy condition for the intensities, the fields, the carriers and the grating. The inversion

population is fixed aroundD0 = 2.45 . The blue and red lines represent the forward and the backward waves,

respectively.

gnr_uni_msh also gives some information. We can inspect the initial condition by a call to

the function gnr_msh_plot, see Fig.V.2.

37



A Asymmetrical Fabry-Pérot V EXAMPLES

10

20

30

40
 I

+
(z

) 
 &

  
I −

(z
)

−5

0

5

 E
+
(z

) 
 &

  
E

−
(z

)
100 200 300 400

2.8

3

3.2

3.4

D
0
(z

)

index
100 200 300 400

−0.5

0

0.5

D
2
(z

) 
( 

x
 1

0
0
 )

index

10

20

30

40

 I
+
(z

) 
 &

  
I −

(z
)

−5

0

5

 E
+
(z

) 
 &

  
E

−
(z

)

100 200 300 400
2.6

2.8

3

3.2

3.4

D
0
(z

)

index
100 200 300 400

−0.5

0

0.5

D
2
(z

) 
( 

x
 1

0
0
 )

index

Figure V.3: Transient (left) and steady (right) profiles for the intensities, the fields, the carriers and the

grating obtained after 500 and 4000 single trips in the cavity, respectively. The blue and red lines represent

the forward and the backward waves, respectively.

4. Time integration

• We start time integration of this uniform, single section device V=1, over 500 single trips

S=500*N, first and then over 3500 single trips S=3500*N, saving data every four points, hence

Samp=4. We do not use the decimation method, hence D=1. We do so by calling the function

Freetwm twice. The use of this function is detailed in Sec. IVB. Typing help Freetwm also

gives some information. At the end of the first integration, we save an intermediate checkpoint

MSH1.

• Notice that after the first call, a message appears signaling that the internal random number

generator has been initialized, i.e.

-First run - Random number generator initialized with seed 380116160 --. On

subsequent calls, it will not be initialized again, and not messages shall appears, unless one

use the clear freetwm; command.

• We plot the profile after 500 and 4000 single trips by using the function gnr_msh_plot. One

can see that we go from a transient strongly multimode regime toward a less multimode steady

regime, as can be seen in Fig. V.3. Also apparent in the right panel of Fig. V.3 is that,

although the population inversion converged in average to D0 ∼ 3, which corresponds to the

threshold value, a strong residual spatial variation of both the fields and the carrier density

remains. This effect is a consequence of the lossy boundary conditions and therefore departure

from the UFL limit [3].
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Figure V.4: Time trace for the fields and the carriers at the both ends of the laser section. Power and Radio

frequency spectra of the field on the right facet, the dominant mode is located at ν = 1.905 THz, while the

gain peak at threshold is at νp = 1.1939 × 1013/ (2π) ∼ 1.900 THz, i.e. a detuning less than the modal

separation. The relaxation oscillation peak is clearly visible around 5GHz.

5. Data processing

• We start by transforming the two time traces into a single one and create a time index, which

allows to plot the intensity time trace and the carrier density. One notice in Fig. V.4 that the

carrier on the left and on the right side of the cavity are not identical, which is a consequence

of the field spatial profiles.

• We perform an optical spectrum of the field once it reached steady state in order to know

the dominant frequency of emission. Therefore we keep only half of the trace. Plotting the

spectrum allows to deduce the side mode suppression ratio as can be see in in Fig. V.4.

Notice the use of the function OpticalSpectrum. Typing help OpticalSpectrum gives some

information but this function is simply using the Fourier transform of Matlab and Octave.

It is important to notice however that it uses ifft and not fft since we are in the minus

representation. Here the frequency will be in THz since the time step is given in picoseconds.

We also use this function to perform the radio frequency spectrum, i.e. the Fourier transform

of the intensity. One can clearly see the relaxation oscillation peak around 4.5GHz, as well as

the multimode beat note around 40GHz.
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B. Laser with a saturable absorber I

We exemplify in this section the use of spatially dependent parameters. We are considering here

a device with identical parameters than previously, for the sake of simplicity. However, the band-gap

of the gain section is not shifted in frequency anymore. In addition, we are considering cleaved

facet with 30% reflectivities on both sides. The threshold is roughly the same although a precise

determination, in the presence of a frequency dependent saturable absorption requires to solve a

more involved threshold equation, see for instance [? ].

We assume the presence of a 3% saturable absorber section located on the right ends of the cavity.

Due to the presence of a reverse voltage on the junction, the carrier decay rate in the absorber is

increased to allows for the existence and the stability of the Mode-Locked regime, see [18, 19]. In

addition, we allow a possible tuning of the band-gap of the absorber section with respect to the one

of the gain section in order to model the shift induced by the Quantum Confined Stark Effect. At

last, we assume that the maximal absorption (i.e. −χ0) in the absorber is three times the one of the

gain section.

• The first two blocks are identical to the previous example, we create an uniform section.

• We define the saturable absorber section by redefining its parameters. The section consists in

N×0.03 = 12 points on the right ends, for which we create an index NSA=N-12+1:N . A parame-

ter can be redefined in a relative or an absolute way. For instance, the gain is redefined from the

matrix of the spatial parameter profile PAR in a relative way PAR(4,NSA)=3*PAR(4,NSA) while

the bias current, the bilinear and auger recombination a set to zero PAR([11 13 14],NSA)=0.

Notice that the non zero parameters values like the absorber band edge, shifted of 5 rad.THz,

as well as the linear recovery time, set to 15 ps have to be scaled by the time step dt ,manually.

The value of this frequency shift is simply to bring the absorber band-edge close to the gain

peak of the gain section at threshold in order to maximize the modulation of the losses.

• The initial condition creation proceed in the same way than for the spatially dependent pa-

rameters. We start by creating an uniform off solution with a constant non vanishing carrier

density by calling gnr_uni_msh , then we put the population inversion and the carrier grating

to zero in the absorber section MSH0(:,NSA,5:6).

• We start time integration and reach a stable mode-locking regime as can be seen in Fig.V.5. In

this picture, the pulse is propagating backward, and the population grating is maximal close

to the right mirror where the forward and backward fields, interfered a quarter round trip ago.

In general the population grating is larger close to the mirrors since it is the only location
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Figure V.5: Intensities, fields, carriers and grating profiles during a mode-locked regime. Notice that the

inversion population is fixed around D0 = 3 in the gain section while it is below transparency in the absorber

section. The blue and red lines represent the forward and the backward waves, respectively.

where the forward and backward waves are simultaneously non zero. The FWHM of the pulse

is around 100 points, i.e. 3 ps.

• As it should be the population inversion in the absorber D0 (1) is pulsating upward when

the optical pulse is passing through, signaling a partial bleaching of the losses. It is also

below transparency. The absorption recovers partially in-between pulses, i.e. D0 = 0, since

the recovery time is shorter than the repetition rate, providing for the so-called background

stability criterion of mode-locking. We also perform an optical spectrum.

• As a first hand on try, one can change the recovery time of the saturable absorber. Longer

than the repetition rate, i.e. 25 ps, the absorber does not recover in-between pulses and one is

loosing the modulation. In-between 20 ps and 5 ps, one does not see a strong influence of the

recovery time. Below this value, one enters the regime of fast absorber and the saturable losses

start to pattern the leading and the trailing edges of the pulses, implying an extra diminution

of the width, try for instance 1 ps. NB: If you change the recovery time by re-executing block-3,

do not multiply the gain again by 3 (or execute block 2 also). One can also place the saturable

absorber in the center of the cavity or at one third in order to trigger harmonic mode-locking

[20, 21].
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Figure V.6: Time trace for the fields and the carriers at the both ends of the laser section. Power and Radio

frequency spectra of the field on the right facet, the dominant mode is located at ν = 1.905 THz, while the

gain peak at threshold is at νp = 1.1939 × 1013/ (2π) ∼ 1.900 THz, i.e. a detuning less than the modal

separation. The relaxation oscillation peak is clearly visible around 5GHz.

C. Laser with a saturable absorber II

In this example, one is considering the same two section laser with a saturable absorber on the

right but instead of using spatially dependent parameters, we are creating here two uniform sections.

Using either an approach based on multiple coupled sections or spatially dependent parameters is

fully equivalent. However, there is one case where the coupled section approach is the only option,

when the width of the transition γ are different. One can for instance consider an absorber with

a smaller value of γ, which would correspond to a very steep band-edge. In this case the memory

time, i.e. the time interval over which the convolution kernel defined in Eq. (II.9) is non vanishing is

longer. The number of point to be kept in the past M = 6/ (γτc) has to be increased in the absorber

section.

• We proceed exactly as in the first example, excepted that everything has to be done twice.

One defines two vector parameters corresponding to the two sections, creates two matrices of

spatial parameter profiles of length N1 = 388 and N2 = 12, in such a way that the absorber

is still 3% of the total cavity. We assume that the width of the transition in the absorber is

divided by four and the gain multiplied by three. In addition, the absorber band-edge is blue

shifted of 6 rad.THz with respect to the gain section. One can see in Fig.V.7 that the gain and
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Figure V.7: Normalized gain and refractive index for vanishing (D0 = 0) and for the threshold carrier density

(D0 = 3) , in the absorber and the gain section, respectively. The intraband decay time (resp. memory

kernel) is divided (resp. multiplied) by four in the absorber section. The Green and the blues lines represent

the band-gap frequency and the maximal energy corresponding to the top of the band, respectively.

the absorption are well reproduced with this set of parameter.

• The boundary matrix is not anymore 2× 2 but 4× 4 and reads

BC =


√

0.3 0 0 0

0 0 1 0

0 1 0 0

0 0 0
√

0.3

 (V.2)

• We generate two uniform initial conditions for the two sections. Notice that the past history

of the absorber is four time the one of the gain section. In addition, the parameters are scaled

by a time step that corresponds to the time of flight of the whole cavity. If it was scaled by

N1 = 388 only, the round-trip in the cavity would be (12.5/N1) (N1 +N2) ∼ 12.9 ps.

• We can start time integration. We notice from the comment on entering and exiting the time

integrator that the two sections have been taken into account

Performing 400000 Steps of integration, expecting 2 section(s)

Initializing Lookup table for Section : 1

Initializing Lookup table for Section : 2

Inj. matrix : No

Modulation matrix : No

allocating 400000 pts x 6 x 2 for saving output

---------------:setting up section(s) output(s)

setting up section output of waveguide nb 1 of dims 24x388x6

setting up section output of waveguide nb 2 of dims 96x12x6
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Figure V.8: Time trace for the fields and the carriers at the left end of the gain section and at the right end

of the absorber section, respectively. Power and Radio frequency spectra of the field on the right facet. The

central frequency of emission is located at ν = 700 GHz, i.e. ω = 4.4 rad.THz. The relaxation oscillation

peak is clearly visible around 5GHz and as side bands around the modal separation peak at 40GHz.

• We observe some nice mode-locking, as the band gap detuning between the gain and the

absorber was carefully chosen. It is clearly on the red side of the gain peak and more close to

the absorber band-edge, which is a way for the laser to minimize the losses, see for instance [? ]

for a discussion of the competition between maximizing the gain and minimizing the saturable

losses.

• As a second hand on try, one can detune the band-edge of the saturable absorber, whose value

with respect to the gain peak is a very sensitive parameter here due to the short value of γ in

the absorber. Detuned to the blue of the gain peak, one is losing the modulation depth of the

absorber and hence mode-locking disappear, try for instance Ω
(sa)
g = 8 rad.THz. For strong red

detuning the absorber becomes too difficult to be modulated by a normal pulse, which triggers

the appearance of macro pulses at the frequency of the relaxation oscillation, the so-called self

pulsating regime, try Ω
(sa)
g = 3 rad.THz. For even redder detuning, the losses are impossible

to be modulated and one gets only shallow multimode dynamics. Try for instance Ω
(sa)
g = 0

rad.THz.
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D. DFB laser wavelength tuning

We perform in this section a parameter sweep which should allows to build a coarse bifurcation

diagram. Besides emphasizing the scripting possibilities, we take advantage of the cell arrays which

are a convenient way of storing data. We consider a tunable distributed feedback laser (DFB). Tuning

of a DFB laser is achieved by changing index of refraction and therefore the spatial optical period

of the grating. This is achieved experimentally either thermally or by current injection. We recall

as discussed in Section II E that tuning the Bragg resonance is achieved by introducing a harmonic

spatial variation in the coefficient κ± (z) ∼ exp (±2iδz). We refer also the reader to eq.VI.17.

We consider again a Fabry-Pérot laser of 1.05 mm which corresponds to a single trip in the cavity

of τc = 12.5 ps. The modal separation is therefore 40GHz and for simplicity, we consider identical

parameters to those used in section VA.

• The boundary conditions correspond to a cleaved reflection facet on the left end and an anti-

reflection coated facet on the right end, where the DBR will be located. The boundary condition

matrix reads

BC =

 1 0

0 0

 . (V.3)

• We assume that the DBR is 25% of the cavity, i.e. ∼ 250µm. The mesh being N = 400, its

length in point number is therefore 100. We choose κ0 = 0.62 in such a way that the induced

maximal reflectivity in amplitude, see Eq.(II.29), is tanh |κ0| ∼ 0.55, which is similar to the one

of a cleaved facet. The distributed coupling is normalized to the length of the subsection made

of 100 pts hence the normalized value of 0.62/100. The bandwidth of the grating is 2 |κ0| = 1.24

which is less than half of the modal separation (π) which should ensure a good single mode

selection.

• We create a spatial index x such that the distributed coupling is purely real at the entrance of

the grating, i.e. the modulation is starting with an antinode. One can see the obtained spatial

profile of the distributed grating on the left panel of Fig. V.9. The Bragg frequency is chosen

to be +10 Fabry-Pérot resonance on the blue, with respect to the SVA expansion point that,

in our case, is the band gap frequency of the material.

• Upon time integration, one reach a steady state and the obtained spatial profiles are depicted

on the right panels of Fig. V.9. For the chosen value of the grating amplitude we obtain

symmetrical intensity profiles since the effective reflectivity on the right side of the cavity is

identical to the one given by the cleaved facet on the left end. Noteworthy, the optically induced
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Figure V.9: Distributed feedback coupling (left) and spatial profiles of the variables (right).

population grating D2 and the distributed grating have the same spatial frequency. This is an

indirect indication that the laser mode is locked to the DBR frequency.

• The transient obtained during time integration as well as the optical spectrum of this device

are represented on the left and right panels of Fig. V.10, respectively. One can clearly see on

the optical spectrum that the Bragg resonance is red shifted with respect to the gain peak.

In addition, one notice some almost symmetrical sidebands around the lasing mode which

indicates that the filter resonance is almost centered onto the cavity mode. One must keep in

mind that the modal separation of the resonances is not exactly π as the material dispersion

relation modifies this value, in addition of the possible offset in the dispersion relation qΩ

defined in Eqs. (II.17-II.19).

• At last, we present in Fig.V.11 a tuning curve over 20 adjacent resonances. We assume that

the modal separation is ∼ π. The tuning curve is build as a numerical bifurcation diagram: for

each new value of the Bragg resonance, we perform time integration until the stationary state

is reached. The result is depicted in Fig.(V.11).
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Figure V.10: Turn on intensity output (left) and optical spectrum (right), normalized to 0 dB.
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Figure V.11: Left: multimode switching intensity transients during a tuning of the DBR resonance. Each

time trace is shifted of 10 for clarity. Right: associated optical spectra (right), normalized to 0 dB.

E. Optical injection into a ring laser

We consider in this example and ring laser of 1.05 mm which corresponds to a single trip in the

cavity of τc = 12.5 ps. The modal separation is therefore 80GHz and for simplicity, we consider

identical parameters to those used in section VA.
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• The boundary conditions represent the effect induced by a point coupler that keeps (resp.

extracts) 50% of the intracavity field intensity. Besides transmission, a residual tiny reflection

induces a parasitic coupling (r ∼ 10−3) between the clockwise and the counter clockwise fields,

which is responsible for the bidirectional emission of semiconductor ring lasers close to threshold

[22, 23]. Far from it, a transition via a pitchfork bifurcation to a bistable, quasi unidirectional

lasing operation occurs, as a result of the competition between linear and non linear modal

coupling terms [24]. See also [25] as well as [26] and reference therein for a recent analysis of

this problem with this TWM. The boundary condition matrix reads

BC =

 √0.50 10−3

10−3
√

0.50

 . (V.4)

• We assume that we are going to make a time integration over 500 single trips, hence S =

500N . Therefore, we must prepare the injected fields over this time span. We will inject a

monochromatic field with a rising and a falling edge. Otherwise, the unphysical discontinuity

of the injected field will trigger a strong multimode transient.

• First, we inject light during the turn on transient just to ensure Clockwise operation. Since we

chose the optical carrier frequency of the injection to be actually the one of the free running

laser, after the falling edge of the injection the emission persists at the same frequency, see Fig.

V.12, left panels.

• We enforced clockwise operation in this bistable system and now, we are going to inject a field

in the other direction in order to reverse the direction of emission, see Fig. V.12, right panels.

• Upon injection again in the reverse direction, but with a detuning of 20 modes to the red, we

do not reverse the emission although we get a nice beating and the generation of Four Wave

Mixing at THz frequency, see Fig. V.13, left panels.

• At last, we inject a short pulse, i.e. whose spectrum is broader than the modal separation,

which will trigger a reversal but also a multimode transient, see Fig. V.13, right panels. One

sees that multimode dynamics persists well after the direction is reversed.
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Figure V.12: Time traces for the injection fields (top) and for the output fields at the left and right ends

of the ring cavity, respectively. The injection is tuned to the solitary lasing frequency, which explains that

emission persists at the same frequency upon releasing the injection.
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Figure V.13: Time traces for the injection fields (top) and for the output fields at the left and right ends

of the ring cavity, respectively. On the left, the injection is strongly detuned which explains that reversal is

incomplete and that the emission returns to the same direction upon releasing the injection. Right, strongly

multimode reversal induced by a 5 ps Gaussian pulse.

F. Passive-active integration

In this example, we exemplify the use of external buffers as delayed boundary conditions to be

used with long passive sections. To do so, we discuss the case of a laser that consists in an anti-
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Figure V.14: Final profile for the intensities, the fields, the carriers and the grating. The inversion population

is fixed aroundD0 = 2.3 . Notice the strong multimode character of the intensity profiles. The blue and red

lines represent the forward and the backward waves, respectively.

reflection coated short amplifier submitted to feedback from an external mirror. The amplifier is 1.05

mm which corresponds to a single trip of τc = 12.5 ps. There will be no internal modal separation

due to the anti-reflective output. For simplicity, we consider identical parameters to those used in

section VA.

Notice that the case of a short amplifier coupled to a long passive section can be readily treated by

two methods already discussed. One can use the method presented in section VB and create spatially

dependent parameters to defines the passive section. One can also use the method presented in section

VC, where one defines multiple yet uniform sections that are coupled via the boundary conditions.

However, this is not efficient. In the case of a very long passive section that consist of

K points, the waves E± still need to be advected, which is both useless since we now that

E± (z, t) = E± (z ∓ a, t− a), and time consuming, since advection of K spatial mesh points involve

at least K shifts. In this case it is much more efficient to write delayed boundary conditions which

reduces the complexity cost of a passive section from O (K) to O (1). This can be easy achieved by

piping the output time traces obtained after K integration steps as optical injection. The results of

this procedure are represented in Fig. V.14 and Fig. V.15, where one can observe a very strongly

multimode regime.
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Figure V.15: Time trace and low pass filtered time trace (left). Optical and power spectra (right). Notice

the large number of external cavity modes in the RF spectrum.

G. Decimation (Sparse Mesh)

We exemplify here how one can obtain a very important speedup by using the option of mesh

decimation. Decimation consists in skipping D points of the mesh, starting from the first on the left

toward the last one on the right. As such, the option of decimation is available only if the mesh

lengths N is odd and such that (N − 1)/D ∈ N with D the decimation factor. For the sake of

simplicity, we consider here a situation similar to the one described in the third example, namely a

two section Fabry-Perot laser with a short saturable absorber section. If one use power of two for

N − 1 and D, each mesh is a subset of the previous one for increasing values of D which allows

restarting the simulation from the previous ones. Therefore, in order to use decimation for the two

sections as well as getting a 3% saturable absorber, we choose N1 = 513 and N2 = 17, which amounts

to a N2/ (N1 +N2) = 3.2% saturable absorber length. Due to the larger meshes, and therefore the

smaller time step, it is possible to choose a slightly larger value of ΩT = 120× 1012 rad.THz (instead

of 90 previously). In this example, we do not use the function gnr_good_disc as we choose directly

the values of N1,2, as such one must scale the time step explicitely.

One notice that the function freetwm gives a specific message regarding the fact that the mesh

sizes chosen allow for decimation. It also indicates the decimation factor chosen (16 and 4 for

example).

--First run --- Random number generator initialized with seed 380116160 --

Performing 1060000 Steps of integration, ... sampling output every 1

section 1 is composed of 513 pts ... speedup with decimation factor 16
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Figure V.16: Time trace for the output intensity on the right facet of the absorber section. From top to

bottom, the decimation factors areD1 = 1, D2 = 1, D1 = 16, D2 = 2, D1 = 32, D2 = 4, andD1 = 32, D2 = 8,

respectively.

Initializing Lookup table for Section : 1

section 2 is composed of 17 pts ... speedup with decimation factor 4

Initializing Lookup table for Section : 2

Inj. matrix : No

Modulation matrix : No

allocating 1060000 pts x 6 x 2 for saving output

We start the laser from a the off noisy initial condition and reach a stationary mode-locked regime.

We do so using an increasing coarser effective mesh, i.e. larger decimation factor. One notice that

although the transient are, and must be, different, the steady state regime is identical, as seen in

Fig.V.16. Noteworthy, if one represents the spatial profiles using or not decimation as in Fig.V.17,

one may find difficult to interpret the decimated saw-toothed profile. It is because in this case, only

a fraction of the mesh is active and therefore time evolving while the other points kept the memory

of their “off” initial condition.
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Figure V.17: Left: spatial profile for the gain section in the normal case, without decimation. Right:

decimated profile on the right with D1 = 32. Notice how only some point are active while the other ones

kept a memory of the off initial condition.
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Figure V.18: Left: Distribution of the intracavity reflectors. Right: spatial profiles in the stationary lasing

regime.

H. Intracavity reflectors

In this example, we show how one can insert wavelength scale Fabry-Pérot cavities into the main

waveguide. This can be achieved for instance by etching a slot into the waveguide. We recall

that the case of a weak internal reflection shall be treated at the level of the boundary conditions

matrix, e.g. by defining several sections and coupling them appropriately. However, the approach

presented here is useful when one wants to insert a large number of small intracavity reflectors, like

for instance in [27]. For the sake of simplicity, we insert here only four features with κ0 = 0.1 at

L/2, 5L/8, 3L/4, 7L/8 as can be seen in in Fig.(V.18). The individual reflectivities of these features

is 1% in power as can be deduced by Eqs.(II.34,II.35). This feature configuration implies that one

mode every eight will be active and, indeed, this is this kind of dynamics that is found upon time

integration, as demonstrated by Fig.(V.19).
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Figure V.19: Left: time traces for the output intensity on the right facet and for the population inversion.

Right: optical and power spectra. One clearly see that the intracavity reflectors are creating harmonic

multimode dynamics.

I. Current Modulation

One of the most direct way to transfer information into the output of a laser is to modulate

the amplitude of the optical wave by varying the strength of the laser current excitation. Freetwm

allows for arbitrary form of bias modulation, i.e. it is not limited to sinusoidal or square waveforms.

Depending on the parameters of the modulation one can observe either a weakly non linear response

or the onset of the so-called Q-switch regime.

• This former case is depicted in the figure V.20 where one defines a harmonic current modulation

of 20% of the DC value with a frequency of 5 GHz.

• The latter case is depicted in the figureV.21 where the modulation is now 100% and its frequency

is 1 GHz. Here the laser emits bursts that exhibit a strongly multimode envelope evolving on

the modal separation time scale.
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Figure V.20: Time trace for the fields and the carriers at the both ends of the laser section. Optical and

Radio frequency spectra of the field on the right facet. The external modulation peak and the generated

harmonics are clearly visible at 5GHz.
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Figure V.21: Time trace for the fields and the carriers at the both ends of the laser section. Optical and

Radio frequency spectra of the field on the right facet. The bursts repetition rate of 1 GHz is controlled by

the frequency of the bias current modulation and is easily identifiable in the power spectrum. Also visible

in the RF spectrum is the relaxation oscillation peak at 7GHz.
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Figure V.22: Left: time trace for the fields and the carriers at the both ends of the laser section. Right:

Optical and Radio frequency spectra of the field on the right facet.

J. Voltage Modulation

Another efficient way to modulate an incoming optical signal is to use a saturable absorber based

electro-optical modulator. Here, the imposed modulation of the reverse voltage induces a change in

the band-gap frequency of the semiconductor material therefore modifying the amount of saturable

absorption at the wavelength of the injected field. Freetwm can be used to study the optical response

to an arbitrary modulation of the active medium band-gap.

One can observe in Fig V.22 the optical response of an absorber submitted to an 5 GHz sinusoidal

modulation of its band-gap frequency. The incoming signal is 2 ns quasi-square pulse. Notice how

such a few nanometers harmonic modulation of the band-gap give rise to a strongly non linear

response with 100% modulation depth.
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VI. MAXWELL TRAVELING WAVES EQUATIONS

we outline in this section the derivation of the scaled traveling waves equations as presented in

Sec. We detail the physical meaning of the slowly varying approximation (SVA). At last, we outline

the physical origin of the losses and of the coupling terms between the forward and backward waves.

A. Fourier representation

In order to develop a time-domain model for the propagation of the optical field, we start by

considering a monochromatic field component ~E(~r, ω) at frequency ω in a quasi-planar waveguide

defined by a distribution of refractive index given by the background material nb (~r⊥, z, ω), where

~r⊥ = (x, y) stands for the transverse dimension. The Maxwell wave equation reads,(
∂2

∂r2
⊥

+
∂2

∂z2

)
~E(~r, ω) +

ω2

c2
n2
b (~r⊥, z, ω) ~E(~r, ω) +

iωσ (ω)

ε0c2
~E(~r, ω) = − ω2

ε0c2
~Pqw(~r, ω) , (VI.1)

where we suppose that the refractive index possesses an imaginary part that accounts for residual

absorption and curvature induced losses. The electrical conductivity at optical frequencies σ (ω) is

responsible for the free carrier absorption. The presence of an active material placed inside the core

of the waveguide is accounted by ~Pqw(~r, ω).

We assume the presence of a fast, wavelength-scale evolving, variation of the index of refraction

in the longitudinal direction and decompose n (~r⊥, z, ω) as

nb (~r⊥, z, ω) = n⊥ (~r⊥, ω) + δn (~r⊥, z, ω) , (VI.2)

where n⊥ (~r⊥, ω) is the transverse distribution of index confining the field and δn (~r⊥, z, ω) represents

the small longitudinal variation imposed either by the grating structure or by the possible roughness

of the waveguide. Typically, the variation of n⊥ (~r⊥, ω) in the x direction is small and stems from

shallow etching while the y variation is strong and results from the semiconductor layered index

structure.

B. Transverse problem

As a consequence of the weak transverse guiding combined with an usual narrow stripe geometry,

the waveguide only support a single TE-polarized mode, denoted Φ (~r⊥, ω) ~x. The modal eigenfunc-

tion Φ is supposed to be solution of the transverse propagation problem which reads[
∂2

∂r2
⊥

+
ω2

c2
n2
⊥ (~r⊥, ω)

]
Φ (~r⊥, ω) =

ω2

c2
n2
eff (ω) Φ (~r⊥, ω) , (VI.3)

where n2
eff (ω) is the effective index of the transverse mode.
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The total field amplitude can then be factorized into a transverse and a longitudinal part E(z, ω),

which yields
~E(~r⊥, z, ω) = Ẽ(z, ω)Φ (~r⊥, ω) ~x , (VI.4)

where we assumed that the transverse mode is normalized such that Φ(0, ω) = 1. As such, |E(z, ω)|2

is the intensity hitting the quantum well structure. Inserting this decomposition into Eq. (VI.1)

yields

Ẽ (z, ω)
{

∂2

∂r2⊥
+ ω2

c2
n2
⊥ (~r⊥, ω)

}
Φ (~r⊥, ω) (VI.5)

+Φ (~r⊥, ω)
{

∂2

∂z2
+ 2ω

2

c2
n⊥ (~r⊥, ω) δn (~r⊥, z, ω) + iωσ(ω)

ε0c2

}
Ẽ(z, ω) = − ω2

ε0c2
Pqw(~r, ω),

where we used that n2 (~r⊥, z, ω) ∼ n2
⊥ + 2n⊥δn + O (δn2). By replacing the first line of Eq. (VI.5)

by the result of Eq. (VI.3), multiplying by Φ? and integrating over the transverse direction one get{´∞
−∞ |Φ (~r⊥, ω)|2 dr⊥

}{
∂2

∂z2
+ ω2

c2
n2
eff (ω) + iωσ(ω)

ε0c2

}
Ẽ(z, ω)

+
{´∞
−∞ |Φ (~r⊥, ω)|2 2n⊥ (~r⊥, ω) δn (~r⊥, z, ω) dr⊥

}
ω2

c2
Ẽ(z, ω) (VI.6)

= − ω2

ε0c2

´
dr⊥Φ? (~r⊥, ω)Pqw(~r, ω)Φ (~r⊥, ω) .

We define the optical confinement factor

Γ =

´
AR

dr⊥ |Φ (~r⊥, ω)|2´∞
−∞ dr⊥ |Φ (~r⊥, ω)|2

, (VI.7)

as a measures of the fraction of optical power that is in the active region. By assuming that the mode

profile does not changes much within the active region, one deduces that the mode normalization is´∞
−∞ dr⊥ |Φ (~r⊥, ω)|2 = |Φ (0, ω)|2 S/Γ = S/Γ, with S the surface of the quantum well. The effective

longitudinal index modulation as seen by the propagating transverse mode is denoted ∆n (z) and

reads

∆n2 (z) =

´∞
−∞ |Φ (~r⊥, ω)|2 {2n⊥ (~r⊥, ω) δn (~r⊥, z, ω)} dr⊥´∞

−∞ dr⊥ |Φ (~r⊥, ω)|2
. (VI.8)

Also, one can write that the projection of the polarization of the quantum well onto the transverse

mode reads
´
dr⊥Φ? (~r⊥, ω)Pqw(~r, ω)Φ (~r⊥, ω)´∞

−∞ dr⊥ |Φ (~r⊥, ω)|2
=

´
AR

dr⊥Φ? (~r⊥, ω)Pqw(~r, ω)Φ (~r⊥, ω)´∞
−∞ dr⊥ |Φ (~r⊥, ω)|2

(VI.9)

∼
´
AR

dr⊥Φ? (~r⊥, ω) Φ (~r⊥, ω)´∞
−∞ dr⊥ |Φ (~r⊥, ω)|2

Pqw(0, z, ω) (VI.10)

= ΓP̃ (z, ω) (VI.11)
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C. The SVA

Finally, the wave equation Eq. (VI.6) reads

∂2Ẽ

∂z2
+
ω2

c2

{
[n (ω) + ik(ω)]2 +

iωσ (ω)

ε0c2
+ ∆n2 (ω, z)

}
Ẽ = − ω2

ε0c2
ΓP̃ , (VI.12)

where we separated explicitly the real and imaginary part of the effective index neff (ω) = n (ω) +

ik(ω). In general, k � n hence (n+ik)2 ' n2 +2inκ+O (k2). This imposes the relation of dispersion

for the traveling waves as q(ω) = ωn(ω)/c.

The light emission from a laser is quasi-monochromatic around an optical carrier frequency ω0,

hence we express the field as a superposition of left and right traveling waves,

Ẽ(z, ω) = Ẽ+(z, ω)eiq0z + Ẽ−(z, ω)e−iq0z , (VI.13)

where the optical carrier wave vector is q0 = q(ω0). The amplitudes E±(z, ω) are evolving on a length

scale much longer than the optical wavelength, this scale separation is the basis of the so-called slowly

varying approximation (SVA). Substituting (VI.13) into (VI.12) yields after simplification

± ∂zẼ± − i
q2 − q2

0

2q0

Ẽ± + λ (ω) Ẽ± + iκ± (ω, z) Ẽ∓ = i
ω2

2ε0c2q0

ΓP̃± . (VI.14)

In Eq. (VI.14), we defined the polarizations P̃± as the longitudinal average being taken over a

scale Σ much longer than the optical wavelength but much shorter than the amplification length, i.e.

P̃±(z, ω) =
1

2Σ

ˆ z+Σ

z−Σ

P̃ (z, ω)e∓iq0zdz . (VI.15)

We also applied the SVA and neglected the second order spatial derivative, i.e. q0∂zE± � ∂2
zE±

and defined the internal losses as

λ (ω) =
κ (ω)

n (ω)
+

ωσ (ω)

n2 (ω) ε0c2
. (VI.16)

At last, resonant part of the slowly evolving amplitudes of the distributed feedback coupling κ±

are defined as

κ± (ω, z) =
ω2

c2

1

2Σ

ˆ z+Σ

z−Σ

∆n2 (ω, z)

n2 (ω)
e∓2iq0zdz. (VI.17)

In practice, one can consider that the index modulation is real, which a very good approximation.

Hence, we assume in the following that κ?− = κ+ = κ.

In the simplest case of a simple periodic grating with a Bragg spatial frequency βb that is identical

to the expansion point q0, the distributed coupling κ (z) is constant in space, i.e. κ± (ω, z) = κ± (ω).

The complex character of κ represents the detuning of the DFB with respect to the nearest cavity

mode. When the Bragg frequency βb is different yet close to the expansion point q0, κ± (ω, z) exhibit a
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(complex) harmonic variation at a spatial frequency 2 (βb − q0), i.e. κ± (ω, z) ∼ exp [±2i (βb − q0) z].

This spatial variation can be used to model the tuning/detuning of the grating with respect to the

gain peak.

At last, it is worth to notice that this grating may model the unwanted rugosity of the waveguide

at spatial frequencies close to the optical wavelength.

Since the field is quasi-monochromatic around ω0, it can be expressed in time domain as

E (z, t) = E+(z, t)eiq0z + E−(z, t)e−iq0z (VI.18)

where E±(z, t) are the slowly-varying amplitudes (both in time and in space) of the forward and

backward waves. Moreover, this allows us to approximate

q (ω) = q0 +
1

vg
(ω − ω0) + 2q0

β2

2
(ω − ω0)2 + ... , (VI.19)

where v−1
g ≡ [dωq]ω0 is the inverse of the group velocity in the waveguide, and β2 ≡ [d2

ωq]ω0/(2q0) is

the second-order waveguide dispersion parameter.

For the sake of simplicity, we shall henceforth neglect the dispersion of the internal loss, i.e.

α (ω) = α (ω0) and of the grating coupling κ± (ω, z) = κ± (ω0, z), which is a good approximation

away from the absorption region of the host semiconductor material. In addition we neglect the

second-order group velocity dispersion of the host material since the dispersion of the active material

is a much more important source.

Thus, Fourier transforming back to time domain (VI.14), A±(z, t) are determined by the TW

equations (
±∂z +

1

vg
∂t

)
E± = i

ω0

2ε0c
ΓP± − λ (z)E± − iκ± (z)E∓ , (VI.20)

where the source term is the slowly-varying amplitude of the active medium’s polarization around

the optical carrier frequency ω0

P±(z, t) ≡
ˆ +∞

−∞

dω

2π
e−i(ω−ω0)tP±(z, ω) . (VI.21)

VII. BLOCH EQUATIONS OPTICAL RESPONSE

We model the optical response of the active medium within the intraband quasi-equilibrium ap-

proximation, which limits the validity of the model to time scales above a few hundreds of femtosec-

onds, which is the time required for the carriers to reach intraband quasi-equilibrium. For these time

scales, the dynamics of the carriers in each small volume of the laser can be described at once with a

local quasi-Fermi level and thus it can be treated as a single entity, the local carrier density N , that

in turn determines the polarization of the active medium.
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A. The free carrier model

We consider a small volume of QW semiconductor material with linear dimensions quite smaller

than a wavelength but yet encompassing many unit cells in the crystal. Assuming that there are

only one electron and one hole band, the time-dependent intraband electron (nk(t)) and hole (hk(t))

distributions in the presence of an optical field E = E (t) e−iΩt + c.c. are given, in the rotating-wave

and dephasing-rate approximations, by [28]

∂tpk = −Γkpk − igk (nk + hk − 1)E , (VII.1)

∂tnk = −nk − nk
τe,k

− igk (E?pk − c.c.) , (VII.2)

∂thk = −hk − hk
τh,k

− igk (E?pk − c.c.) , (VII.3)

where nk and hk are the slowly-varying quasi-equilibrium intraband distributions of electrons and

holes

nk = F
[
β

(
~k2

2me

− µn (t)

)]
, (VII.4)

hk = F
[
β

(
~k2

2mh

− µh (t)

)]
, (VII.5)

where µ (t) is the slowly time dependent Fermi level, the inverse of the thermal energy is β = (kbT )−1,

F represents the Fermi-Dirac function, pk is the electron-hole coherence, E (t) is the slowly varying

amplitude of the optical field whose carrier frequency is Ω, gk is the dipolar moment, ~ωk = Egap +

~2k2/(2m) is the reduced energy of the electron-hole pair and m is the reduced electron and hole

mass. The relaxation towards quasi-equilibrium of the electron and hole distributions is described

in the simplest approximation of constant rates τe,k and τh,k toward local equilibrium [29], where the

polarization dephasing rate reads γk =
(
τ−1
e,k + τ−1

h,k

)
/2, and Γk = γk + i(ωk − Ω). Since the optical

carrier frequency can be freely chosen, we shall henceforth consider that Ω = Egap/~.

The macroscopic optical polarization of the system, P(t) = P (t) e−iΩt + c.c. is given by the

electron-hole coherence through

P (t) =
1

V

∑
k

gkpk(t) , (VII.6)

where the summation runs over all electronic states, i.e. spin orientations and from k = 0 up to km,

the maximum wavevector in the first Brillouin zone of the crystal. Still, in order to obtain P (t) we

must integrate eqs. (VII.1-VII.3), which do not possess a closed-form analytical solution.

B. Time domain response

In order to obtain the time dependent macroscopic polarization of the active medium, we define

the saturation energy of the two-level atom transition Isat = (4g2τeτh)
−1 and define a smallness
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parameter ε = 1/
√
Isat. We assume that the field is of the form E = εA with A ∼ O (1) and expand

the polarization and carriers into the odd-even serie [30] as

pk = εp
(1)
k + ε3p

(3)
k , (VII.7)

nk = n
(0)
k + ε2n

(2)
k , (VII.8)

hk = h
(0)
k + ε2h

(2)
k . (VII.9)

Within the quasi-equilibrium approximation, which applies on time scales larger than the intra-

band relaxation time and to fields which are weak compared to the saturation intensity of the optical

transitions, we have that

∂tpk = −Γkpk − ig
(
n̄k + h̄k − 1

)
E +O(|E|2E) . (VII.10)

The higher order terms describe the effects of Spectral Hole Burning and they are usually small in

semiconductor lasers since the intraband relaxation rates are quite fast (typically, τe,h ∼ 100 fs).

Provided that we are not interested on such time scales and that the fields are not saturating, the

quasi-equilibrium approximation can be safely adopted. Therefore, eq. (VII.10) can be formally

solved as

pk(t) =

ˆ t

−∞
dsRk(t− s, s)E(s) +O(|E|2E) , (VII.11)

where we defined the k-dependent convolution kernel

Rk(t− s, s) = −ige−Γk(t−s) [nk (s) + hk (s)− 1
]
. (VII.12)

Eq. (VII.10) was the starting point in [13] for finding the frequency-dependent susceptibility of

the medium to a monochromatic field under the following approximations: parabolic bands, low

temperature, charge neutrality and k-independent dipolar moment and intraband relaxation rate,

i.e. gk = g and γk = γ⊥. This yields the following susceptibility for a monochromatic field at

frequency ω

χ̃(ω,N) = −χ0

[
2 log

(
1− γ⊥D

ω − Ωg + iγ⊥

)
− log

(
1− ΩT

ω − Ωg + iγ⊥

)]
, (VII.13)

where χ0 = mγ⊥g
2/ (πε0W~), ΩT = ~k2

m/ (2m) the frequency of the top of the energy band and the

carrier density was scaled as

D =
N

Nt

, Nt =
mγ⊥
πW~

, (VII.14)

with W the width of the of the QW and Nt its transparency carrier density. In the absence of

current injection, i.e. D = 0, the susceptibility in eq. (VII.13) exhibits transparent (resp. absorptive)

behavior for frequencies below (resp. above) the band-gap, i.e. ω < Ωg (resp. ω > Ωg). In addition,
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since the energy band is limited by the maximal wavevector km, there is a second transition from

absorptive to transparent behavior when ω > ΩT . Notice that in the case of a non vanishing

temperature, such a simple analytical expression as eq. (VII.13) does not exist.

In time-domain, we can proceed in the same way and under the same assumptions as in [13].

Then we have that the macroscopic polarization in time domain reads

P (t) = ε0

ˆ ∞
0

dr χ(r,D(t− r))E(t− r) +O(|E|2E) , (VII.15)

where the k-summation of the convolution kernel Rk reads

χ [r,D (s)] = χ0e
−(γ⊥+iΩg)r

(
2e−iγ⊥D(s)r − 1− e−iΩT r

)
/r . (VII.16)

The macroscopic polarization is thus given by the convolution of the response kernel with the optical

field.

The application of eq. (VII.15) to the case of a TWM requires some care as it is based on the

slowly varying approximation and depend upon decomposing the field into forward and backward

propagating waves and the carrier density into slow and fast spatially evolving components. We

explain here how eq. (VII.15) can be implemented in this case. From eq. (VII.15) we have that

P±(z, t) = ε0

{ˆ +∞

0

χ [s,D0 (z, t− s)]E± (z, t− s)

+ D±2 (z, t− s) ∂χ
∂D

[s,D0 (z, t− s)]E∓ (z, t− s) ds
}
. (VII.17)

with the convolution kernel defined in eq. (VII.16) and its derivative with respect to the carrier

density as

∂χ(r,D)

∂D
= −2iγ⊥χ0 exp [−γ⊥ (1 + iD) s− iΩgs] . (VII.18)

One notice in eq. (VII.17) that the counter-propagating waves E±(z, t) couple through the popu-

lation grating induced in the carrier density D±2 (z, t), the so-called spatial hole burning.

C. The retarded argument

The inspection of the eqs. (VII.15,VII.16) calls for a helpful approximation. The kernel of inte-

gration χ being non zero from r = 0 to r ∼ 3γ−1
⊥ , i.e. a few hundred of femtoseconds it is possible

to assume that the carrier density D (z, t) does not change appreciably over this time interval. This

suggests performing a first order Taylor expansion of eq. (VII.16)

χ [r,D (t− r)] ∼ χ [r,D (t)] + rḊ (t)
∂χ

∂D
+ ... (VII.19)
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One can give an order of magnitude of the first order correction: the relative error is estimated as

e =

∣∣∣∣rḊ (t)
∂χ

∂D
/χ [r,D (t)]

∣∣∣∣ . (VII.20)

In typical QW lasers the carrier density is only a few times larger than its transparency, i.e. D ∼ O (1)

and possess a decay rate of the order of the GigaHertz, i.e. Ḋ (t) ∼ γ||D ∼ 109. By assuming the

most offending value of the time instant r ∼ γ−1
⊥ , we obtain

e ∼ O
(
γ||γ

−1
⊥
)
∼ 10−4 (VII.21)

The result of eq. (VII.21) suggests that the retarded argument of D (z, t) in eqs. (VII.15,VII.16) can

safely be neglected provided that the time evolution of the carrier density over a time γ−1
⊥ remains

small. The above statement can only be violated if one considers the dynamics of highly energetic

subpicosecond pulses where the strongly non linear stimulated emission can modify appreciably the

carrier density within a time interval of a few hundreds of femtoseconds. This is exactly the situation

at hand when one is considering a saturable absorber section. As such, the retarded arguments

D0 (t− s) and D2 (t− s) can be kept or not in the numerical implementation, by providing the

appropriate compilation flags as detailed in section IV J 1. Keeping the retarded argument can be

achieved at a reasonably increased computational cost. Notice that for instance, the results presented

in [2, 26, 31] neglect the retarded time argument. In addition, the situations in which the retarded

argument can be of importance, correspond to very short energetic pulses for which our first order

expansion in the field amplitude in eq. (VII.15) may not be longer valid. A such, keeping the retarded

time argument in eq. (VII.15,VII.16) may not be always consistent with neglecting the O
(
|E|2E

)
terms in eq. (VII.15).

VIII. NUMERICAL INTEGRATION ALGORITHM

The algorithm presented in this section is both second order in time and in space. No approxi-

mation of the spatial derivative operator using e.g. finite differences are required as it would induces

spurious numerical damping. Instead, the integration is performed along the space-time directions,

the so-called characteristic lines as detailed in [32, 33]. Indeed, the analytical solution of the advection

equations with source S±

(∂t ± ∂z)E± = S± (z, t) , (VIII.1)

reads

E± (z, t) = E± (z ∓ r, t− r) +

ˆ r

0

S (z ∓ r, t− r) ds. (VIII.2)
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Notice that no hypothesis on S± is needed and as such, the source term can depend on E±,

which allows to treat besides real sources, propagation losses and distributed coupling. Notice that

the distributed couplings represent exchanges of energy between the forward and the backward

propagation directions. As such these effects are conservative which may not be the case numerically.

However, our method is constructed such that if there is no gain nor any losses, the total photon

number is concerved .

A. The field update

The update of the field equations reads

(E+)n+1
j − (E+)n+1−l

j−l = −hl
2

[
λj−l (E+)n+1−l

j−l + λj (E+)n+1
j

]
− ihl

2

[
κj−l (E−)n+1−l

j−l + κj (E−)n+1
j

]
+

ihl

2

[
(P+)n+1−l

j−l + (P+)n+1
j

]
+O

(
l3h3

)
, (VIII.3)

(E−)n+1
j − (E−)n+1−r

j+r = −hr
2

[
λj+r (E−)n+1−r

j+r + λj (E−)n+1
j

]
− ihr

2

[
κ?j+r (E+)n+1−r

j+r + κ?j (E+)n+1
j

]
+

ihr

2

[
(P−)n+1−r

j+r + (P−)n+1
j

]
+O

(
r3h3

)
, (VIII.4)

where we used a semi-implicit trapezoidal method for the right hand side quantities, yielding second

order accuracy, i.e. exact up to O (h3). When l = r = 1, the field update is the conventional one

used in a traveling wave model. However, when l 6= r 6= 1, the update “leapfrog” between several

spatial points and use values of the field that are several time step in the past. In this case, one may

consider that the PDEs are recasted into a system of coupled DAE. The difference between the full

and the sparse grid schemes is visually represented in the figures III.5 and III.6.

B. The polarization update

The active material response is given by the convolution equation Eqs. (II.7-II.9). Note that

the convolution is also performed by using the trapezoidal method, hence it is also second order

accurate in time which is consistent with the numerical scheme of Eqs. (VIII.3-VIII.4). However,

the polarizations (P±)n+1
j at time tn+1 = (n+ 1)h depend on the fields (E±)n+1

j at tn+1 that we

are indeed seeking in the equations Eqs. (VIII.3,VIII.4). In addition, (P±)n+1
j depend as well on

the values of (D0)n+1
j and (D2)n+1

j that are not known. Therefore, we separate explicitly the first

trapezoid from tn+1 to tn in the convolution equation Eq. (II.7). We call the remaining contribution

that depends only of the past known values (K±)j and get
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(P+)n+1
j = ihχ0j

{[
ΩTj

2
− γj

(
D0

)n+1

j

]
(E+)n+1

j −
(
D2

)n+1

j
γj (E−)n+1

j

}
+ (K+)j +O

(
h3
)

(VIII.5)

(P−)n+1
j = ihχ0j

{[
ΩTj

2
− γj

(
D0

)n+1

j

]
(E−)n+1

j −
(
D
?

2

)n+1

j
γj (E+)n+1

j

}
+ (K−)j +O

(
h3
)

(VIII.6)

In Eqs. (VIII.5,VIII.6) we denoted
(
D0

)n+1

j
and

(
D2

)n+1

j
the values predicted by an explicit Euler

step, which are only first order accurate in O (h2). However, the first trapezoid is O (h) which allows

to recover second order accuracy.

C. Defining the linear system

Inserting the expression of (P±)n+1
j given by the Eqs. (VIII.5,VIII.6) into Eqs. (VIII.3,VIII.4),

we obtain a linear system of two equations that reads

aj (E+)n+1
j + bj (E−)n+1

j = (V+)j (VIII.7)

dj (E−)n+1
j + cj (E+)n+1

j = (V−)j (VIII.8)

with the following definition of the coefficients

aj = 1 +
hl

2

{
λj + hχ0j

[
ΩTj

2
− γj

(
D0

)n+1

j

]}
(VIII.9)

dj = 1 +
hr

2

{
λj + hχ0j

[
ΩTj

2
− γj

(
D0

)n+1

j

]}
(VIII.10)

bj =
hl

2

[
iκj − hχ0j

(
D2

)n+1

j
γj

]
(VIII.11)

cj =
hr

2

[
iκ?j − hχ0j

(
D
?

2

)n+1

j
γj

]
(VIII.12)

(V+)j =

(
1− hl

2
λj−l

)
(E+)n+1−l

j−l +
ihl

2

[
(P+)n+1−l

j−l + (K+)j − κj−l (E−)n+1−l
j−l

]
(VIII.13)

(V−)j =

(
1− hr

2
λj+r

)
(E−)n+1−r

j+r +
ihr

2

[
(P−)n+1−r

j+r + (K−)j − κ
?
j+r (E+)n+1−r

j+r

]
(VIII.14)

the solution of Eqs. (VIII.7,VIII.8) gives the values of the fields at the time step tn+1 as

(E+)n+1
j =

[
dj (V+)j − bj (V−)j

]
/ (ajd, − bjcj) (VIII.15)

(E−)n+1
j = −

[
cj (V+)j − aj (V−)j

]
/ (ajd, − bjcj) (VIII.16)

from the solution (E±)n+1
j , one can deduce the values of the polarizations (P±)n+1

j by simply using

Eqs. (VIII.5,VIII.6).
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D. Boundary conditions

Some care must be taken for the time update of the first (resp. last) point for the forward

(resp. backward) field. Instead of integrating along a characteristic whose length is h, we divide this

integration step into three stages.

half explicit Euler step The fields (E+)nN and (E−)n1 are propagated from the spatial points

j = N and j = 1, respectively, toward the boundaries by using the explicit Euler method for half a

step which yields

(E+)
n+ 1

2
−ε

N+ 1
2
−ε − (E+)nN =

h

2
{−λN (E+)nN − iκN (E−)nN + i (P+)nN}+O

(
h2
)

(VIII.17)

(E−)
n+ 1

2
−ε

1
2

+ε
− (E−)n1 =

h

2
{−λ1 (E−)n1 − iκ

?
1 (E+)n1 + i (P−)n1}+O

(
h2
)

(VIII.18)

boundary conditions We link the values of the fields just before the interface, (E+)
n+ 1

2
−ε

N+ 1
2
−ε and

(E−)
n+ 1

2
−ε

1
2

+ε
and just after, (E+)

n+ 1
2

+ε
1
2

+ε
and (E−)

n+ 1
2

+ε

N+ 1
2
−ε, by applying the boundaries conditions given

by Eqs. (III.5-III.6 which yields

(E+)
n+ 1

2
+ε

1
2

+ε
= tl (E+)

n+ 1
2
−ε

N+ 1
2
−ε + rl (E−)

n+ 1
2
−ε

1
2

+ε
+ (Y+)n+ 1

2 (VIII.19)

(E−)
n+ 1

2
+ε

N+ 1
2
−ε = tr (E−)

n+ 1
2
−ε

1
2

+ε
+ rr (E+)

n+ 1
2
−ε

N+ 1
2
−ε + (Y−)n+ 1

2 (VIII.20)

Half implicit Euler step At last, The fields (E+)
n+ 1

2
+ε

1
2

+ε
and (E−)

n+ 1
2

+ε

N+ 1
2
−ε are propagated from the

boundaries toward the spatial points j = 1 and j = N by using the implicit Euler method for half a

step which yields

(E+)n+1
1 − (E+)

n+ 1
2

+ε
1
2

+ε
=

h

2

{
−λ1 (E+)n+1

1 − iκ1 (E−)n+1
1 + i (P+)n+1

1

}
+O

(
h2
)

(VIII.21)

(E−)n+1
N − (E−)

n+ 1
2

+ε

N+ 1
2
−ε =

h

2

{
−λN (E−)n+1

N − iκ?N (E+)n+1
N + i (P−)n+1

N

}
+O

(
h2
)
(VIII.22)

An elegant way to consider the update of these two special equations is to use a mesh with two

extra points at j = 0 and j = N + 1 and use these points to apply the boundary conditions. Also,

one must nullify some related parameters like λ and κ to not count twice some effects. Indeed, if one

write

(E+)n0 = (E+)
n+ 1

2
+ε

1
2

+ε

(E−)nN+1 = (E−)
n+ 1

2
+ε

N+ 1
2
−ε (VIII.23)

(P+)n0 = (P−)nN+1 = 0

λ0 = λN+1 = 0

κ0 = κN+1 = 0
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One can check that in this case, the equations Eqs. (VIII.21,VIII.22) are identical to the equations

Eqs. (VIII.3,VIII.4) when j = 0 and j = N + 1. In addition, the error performed during the explicit

and implicit Euler steps cancel each other restoring second order accuracy. Indeed, a trapezoidal

integration step can be considered as the succession of half an explicit Euler step and half an implicit

Euler step.

E. The carrier density update

Integrating the carrier equations given by Eq. (VIII.4) over a time step h gives

(D0)n+1
j − (D0)nj = hJj −

´
R (D0) dt (VIII.24)

−hs=
[
(E+)nj

(
P ?

+

)n
j

+ (E−)nj
(
P ?
−
)n
j

+ (E+)n+1
j

(
P ?

+

)n+1

j
+ (E−)n+1

j

(
P ?
−
)n+1

j

]
+O (h3)

where we used the second order accurate trapezoidal method for the stimulated source. However,

the non linear recombination term R (D0) imposes to make a semi-implicit expansion. By assuming

a linear evolution of the carrier between the times tn and tn+1 one gets

D0j (t) ∼ (D0)nj +
t− tn
h

[
(D0)n+1

j − (D0)nj

]
+O

(
h2
)

(VIII.25)

and hence, with R′ = dR/dD,
ˆ tn+1

tn

R (D0) dt ∼ hR
[
(D0)nj

]
+
h

2
R′
[
(D0)nj

] [
(D0)n+1

j − (D0)nj

]
+O

(
h3
)
. (VIII.26)

Collecting all terms gives the carrier update as

(D0)n+1
j = (D0)nj + h

1+h
2
R′ {Jj −R (VIII.27)

−s=
[
(E+)nj

(
P ?

+

)n
j

+ (E−)nj
(
P ?
−
)n
j

+ (E+)n+1
j

(
P ?

+

)n+1

j
+ (E−)n+1

j

(
P ?
−
)n+1

j

]}
+O (h3) ,

with R = R
{

(D0)nj

}
and R′ = dR/dD

{
(D0)nj

}
.

F. The carrier grating update

Integrating the carrier grating equations given by Eq. (VIII.5) over a time step h gives in a similar

way the following time update

(D2)n+1
j =

1− dh
2

1+ dh
2

(D2)nj (VIII.28)

− ih
2+dh

[
(P+)nj

(
E?
−
)n
j
− (E+)nj

(
P ?
−
)n
j

+ (P+)n+1
j

(
E?
−
)n+1

j
− (E+)n+1

j

(
P ?
−
)n+1

j

]
+O (h3)
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where we used the trapezoidal method for both the linear damping term and for the stimulated

source term. We denoted the total grating damping term evaluated in-between the times tn and tn+1

as

d = R
′
[
(D0)

n+ 1
2

j

]
+ 4Dq2

0, (VIII.29)

For the sake of performance, the value of R′ is not recomputed and we use the one previously

evaluated, i.e. we assume that R′
[
(D0)

n+ 1
2

j

]
∼ R′

[
(D0)nj

]
. This approximation is usually excellent

since the diffusive contribution to the damping term is dominant, i.e. 4Dq2
0 � R′.
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